Calculation of Reverse Osmosis and Nanofiltration Membrane Facilities to Process Solid Waste

2020 ◽  
Vol 2 (5) ◽  
pp. 296-309
Author(s):  
A. G. Pervov ◽  
T. N. Shirkova ◽  
K. V. Tikhonov
Biofouling ◽  
2011 ◽  
Vol 27 (2) ◽  
pp. 173-183 ◽  
Author(s):  
Mohiuddin Md. Taimur Khan ◽  
Philip S. Stewart ◽  
David J. Moll ◽  
William E. Mickols ◽  
Sara E. Nelson ◽  
...  

Desalination ◽  
2001 ◽  
Vol 138 (1-3) ◽  
pp. 259-270 ◽  
Author(s):  
C.A.C. van de Lisdonk ◽  
B.M. Rietman ◽  
S.G.J. Heijman ◽  
G.R. Sterk ◽  
J.C. Schippers

2012 ◽  
Vol 441 ◽  
pp. 584-588
Author(s):  
San Chuan Yu ◽  
Zhi Wen Chen ◽  
Mei Hong Liu ◽  
Jing Wei Zhao

In view of the water shortage, the increasingly severe regulations as well as the release thresholds, it is becoming increasingly necessary to reuse the textile effluents. This work concerned the treatment of textile plant effluent after conventional biological processing by membrane technology for water reuse. Desal5 DK nanofiltration (NF) membrane and BW30 reverse osmosis (RO) membrane were investigated in this study in terms of COD and color removal, salinity reduction as well as permeate flux through cross-flow permeation tests. The results showed that the Desal5 DK nanofiltration membrane exhibited higher stabilized water permeability and flux decline than the reverse osmosis membrane because of its higher porosity and tendency towards fouling. The BW30 reverse osmosis membrane reduced salinity to a great extent than the Desal5 DK nanofiltration membrane. While the nanofiltration membrane exhibited better COD removal efficiency compared to the RO membrane, possibly due to its sieving removal mechanism. The treated water with good enough quality could be recycled back into the process, thereby offering economical benefits by reducing the water consumption and wastewater treatment cost.


2019 ◽  
Vol 97 ◽  
pp. 06004 ◽  
Author(s):  
Alexei Pervov ◽  
Xuan Quyet Nguyen

Main disadvantages of state of the art membrane techniques are discussed with respect to the problem of concentrate disposal. Possible ways to improve conventional membrane techniques and to radically decrease the number of effluents discharged are proposed. Application of newly developed “open channel” membrane modules that do not contain “dead” areas enables us to develop and implement into practice new techniques to reduce and even utilize concentrates of membrane units. Experiments demonstrated a possibility to reduce concentrate flow due to deposition of excessive calcium as calcium carbonate on seed crystals in the reactor. Flow diagrams for different cases of natural water composition are described and discussed that demonstrate newly developed techniques to produce drinking quality water using reverse osmosis and nanofiltration membrane facilities with high recoveries.


2020 ◽  
Vol 10 (5) ◽  
pp. 671-679
Author(s):  
Mahmoud Fathy ◽  
Abeer El Shahawy ◽  
Th. Abdel Moghny ◽  
Ayman Nafady

Treatment and cleaning of reverse osmosis (RO) membranes saturated with CaCO3/brine is a main issue in RO desalination processes. Herein, a Cu–ZnO-polyvinyl chloride (PVC)-nylon nanofiltration membrane was synthesized and utilized to minimize and/or eliminate CaCO3/brine during RO, along with probing the effects of Cu–ZnO antiscalant on calcite precipitation in normal aqueous and supersaturated CaCO3/brine solutions. Moreover, decreases in Ca2+ content over time were evaluated by electrical conductivity and pH measurements. Results revealed that Cu–ZnO nanocomposite substantially increases induction time and stimulates the formation of aragonite rather than calcite. A 2 mg/L dose of Cu–ZnO nanocomposite suppressed CaCO3 in both unsaturated and supersaturated solutions. In natural water sources (containing ∼500 mg/L calcium and ≈300 mg/L bicarbonate content), complete removal of CaCO3 blockage was achieved by using 2.5 mg/L of Cu–ZnO antiscalant, while in supersaturated water solutions (1000 mg/L calcium and ≈500 mg/L bicarbonate content), only 2 mg/L of Cu–ZnO antiscalant was required to fully remove the blockage. Importantly, addition of 2 mg/L of Cu–ZnO antiscalant to RO brine showed no apparent deposition on the membrane surface after 6 h, with a minimal flux decrease to 86.5%. Thus, Cu–ZnO-PVC-nylon nanofiltration membranes with low concentrations (2 mg/L) of Cu–ZnO antiscalant can play a significant role in the treatment of supersaturated CaCO3/brine water discharge.


2018 ◽  
Vol 5 (3) ◽  
pp. 478 ◽  
Author(s):  
Iman Ciptaraharja ◽  
Veronica S. Praptowidodo

Utilization of nanofiltration membrane for high valence ion and organic compound removing from high salinized water source.The influence of solvent selection to membrane morphology for cellulose acetate nanofiltration membrane preparation in mass transfer of a multistage reverse osmosis process is studied. Membrane is prepared via precipitation immersion technique. The polymer used in this study is cellulose acetate (CA) with a concentration of 25 %-w. The feed concentration of univalent ion solution (NaCl) is varied between 2000-16.000 mg/L. The operating pressure is adjusted such that the operating pressure is three times of the osmotic pressure of NaCl solution. The concentration of bivalent ion (CaCl2), trivalent ion (FeCl3), and organic substance (glucose) are 200 mg/L, 50 mg/L, and 100 mg/L, respectively. The morphology of the membrane is characterized using Scanning Electron Microscopy (SEM). Membrane CA-01 (CA/DMF/Water) is a nanofiltration membrane with a thinner active layer and a more porous support layer than membrane CA-02 (CA/Aceton/Watter) which is categorized as a reverse osmosis membrane. A reduced feed concentration (at a fixed operating pressure) gives an elevated flux however the rejection is decreased. Meanwhile, an elevated operating pressure (at a fixed feed concentration) gives an elevated flux and rejection. Membrane CA-01 has met the requirement as a nanofiltration membrane since it gives 66 % rejection for NaCl at 20 Bar. At the same operating pressure, membrane CA-01 gives rejection for CaCl2, FeCl3, and glucose of 80.45%, 82.14%, and 83.42%, respectively.Keywords: Cellulose Acetate, Membrane, Multistage, Nanotiltration, Reverse Osmosis, Saline WaterAbstrakPenelitian ini dilakukan untuk mempelajari pengaruh jenis pelarut dalam pembuatan membran nanofiltrasi dari polimer selulosa asetat terhadap struktur morfologi membran dalam peristiwa perpindahan massa pada proses pemisalan osmosis balik multitahap. Teknik pembuatan membran yang digunakan adalah presipitasi imersi. Polimer membran yang digunakan adalah seulosa asetat (CA) pada konsentrasi 25 %-berat. Umpan yang digunakan adalah larutan ion valensi satu (NaCl) dengan variasi konsentrasi antara 2000 hingga 16.000 mg/L. Tekanan operasi diatur sedemikian rupa sehingga nilai rekanan operasi adalah sekitar tiga kali tekanan osmotik larutan NaCl. Percobaan juga dilakukan untuk umpan larutan ion valensi dua (CaCl2), ion valensi tiga (FeCl3), dan senyawa organik (glukosa) dengan konsentrasi, berturut-turut, adalah 200 mg/L, 50 mg/L,  dan 100 mg/L. Struktur morfologi membran diuji menggunakan metoda Scanning Electron Microscopy (SEM). Membran CA-01 (CA/DMF/Air) merupakan membran nanofiltrasi dengan lapisan aktif yang lebih tipis dan ukuran pori lapisan penyangga yang lebih besar daripada membran CA-02 (CA/Aseton/Air), yang termasuk ke dalam membran osmosis balik. Penurunan konsentrasi umpan pada tekanan operasi yang tetap memberikan nilai fluks yang meningkat, namun memberikan nilai rejeksi yang menurun. Sementara itu, peningkatan tekanan operasi pada konsentrasi umpan yang tetap akan memberikan nilai fluks dan rejeksi yang meningkat. Membran CA-01 telah memenuhi persyaratan sebagai membran nanofiltrasi dengan rejeksi NaCl mencapai 66 % pada tekanan 20 Bar. Pada tekanan yang sama membran CA-01 memberikan nilai rejeksi untuk CaCl2, FeCl3, dan glukosa berturut-turut sebesar 80,45%, 82,14%, dan 83,42 %.Kata Kunci: Air Salinitas Tinggi, Membran, Multitahap, Nanofiltrasi, Osmosis Balik, Selulosa Asetat.


Sign in / Sign up

Export Citation Format

Share Document