Two uncertainty relations

2011 ◽  
Vol 76 (5) ◽  
pp. 399-406 ◽  
Author(s):  
Lubomír Skála ◽  
Vojtěch Kapsa

Heisenberg and Robertson–Schrödinger uncertainty relations for the coordinate and momentum follow from two stronger uncertainty relations. The first uncertainty relation has classical character and its right-hand side can have an arbitrary value greater than or equal to zero. The second uncertainty relation has quantum character and its right-hand side equals h2/4; its existence is related to the existence of the envelop of the wave function. These two uncertainty relations cannot be obviously improved on. The equality sign in the second relation can be achieved for much larger class of the wave functions than in case of the Heisenberg or Robertson–Schrödinger uncertainty relations.

1993 ◽  
Vol 08 (20) ◽  
pp. 1925-1941
Author(s):  
ULF H. DANIELSSON

In this work the quantum theory of two-dimensional dilaton black holes is studied using the Wheeler-De Witt equation. The solutions correspond to wave functions of the black hole. It is found that for an observer inside the horizon, there are uncertainty relations for the black hole mass and a parameter in the metric determining the Hawking flux. Only for a particular value of this parameter can both be known with arbitrary accuracy. In the generic case there is instead a relation that is very similar to the so-called string uncertainty relation.


2019 ◽  
Author(s):  
Vitaly Kuyukov

Modern general theory of relativity considers gravity as the curvature of space-time. The theory is based on the principle of equivalence. All bodies fall with the same acceleration in the gravitational field, which is equivalent to locally accelerated reference systems. In this article, we will affirm the concept of gravity as the curvature of the relative wave function of the Universe. That is, a change in the phase of the universal wave function of the Universe near a massive body leads to a change in all other wave functions of bodies. The main task is to find the form of the relative wave function of the Universe, as well as a new equation of gravity for connecting the curvature of the wave function and the density of matter.


Entropy ◽  
2018 ◽  
Vol 20 (10) ◽  
pp. 763 ◽  
Author(s):  
Ana Costa ◽  
Roope Uola ◽  
Otfried Gühne

The effect of quantum steering describes a possible action at a distance via local measurements. Whereas many attempts on characterizing steerability have been pursued, answering the question as to whether a given state is steerable or not remains a difficult task. Here, we investigate the applicability of a recently proposed method for building steering criteria from generalized entropic uncertainty relations. This method works for any entropy which satisfy the properties of (i) (pseudo-) additivity for independent distributions; (ii) state independent entropic uncertainty relation (EUR); and (iii) joint convexity of a corresponding relative entropy. Our study extends the former analysis to Tsallis and Rényi entropies on bipartite and tripartite systems. As examples, we investigate the steerability of the three-qubit GHZ and W states.


1996 ◽  
Vol 11 (20) ◽  
pp. 1611-1626 ◽  
Author(s):  
A.P. BAKULEV ◽  
S.V. MIKHAILOV

In a recent paper1 we have proposed a new approach for extracting the wave function of the π-meson φπ(x) and the masses and wave functions of its first resonances from the new QCD sum rules for nondiagonal correlators obtained in Ref. 2. Here, we test our approach using an exactly solvable toy model as illustration. We demonstrate the validity of the method and suggest a pure algebraic procedure for extracting the masses and wave functions relating to the case under investigation. We also explore the stability of the procedure under perturbations of the theoretical part of the sum rule. In application to the pion case, this results not only in the mass and wave function of the first resonance (π′), but also in the estimation of π″-mass.


1928 ◽  
Vol 24 (4) ◽  
pp. 501-505 ◽  
Author(s):  
J. M. Whittaker

In two recent papers Dirac has shown how the “duplexity” phenomena of the atom can be accounted for without recourse to the hypothesis of the spinning electron. The investigation is carried out by the methods of non-commutative algebra, the wave function ψ being a matrix of the fourth order. An alternative presentation of the theory, using the methods of wave mechanics, has been given by Darwin. The four-rowed matrix ψ is replaced by four wave functions ψ1, ψ2, ψ3, ψ4 satisfying four linear differential equations of the first order. These functions are related to one particular direction, and the work can only be given invariance of form at the expense of much additional complication, the four wave functions being replaced by sixteen.


1955 ◽  
Vol 33 (11) ◽  
pp. 668-678 ◽  
Author(s):  
F. R. Britton ◽  
D. T. W. Bean

Long range forces between two hydrogen molecules are calculated by using methods developed by Massey and Buckingham. Several terms omitted by them and a corrected numerical factor greatly change results for the van der Waals energy but do not affect their results for the static quadrupole–quadrupole energy. By using seven approximate ground state H2 wave functions information is obtained regarding the dependence of the van der Waals energy on the choice of wave function. The value of this energy averaged over all orientations of the molecular axes is found to be approximately −11.0 R−6 atomic units, a result in close agreement with semiempirical values.


2020 ◽  
Vol 15 ◽  
pp. 57
Author(s):  
G. S. Anagnostatos

The significant features of exchange symmetry are displayed by simple systems such as two identical, spinless fermions in a one-dimensional well with infinite walls. The conclusion is that the maxima of probability of the antisymmetrized wave function of these two fermions lie at the same positions as if a repulsive force (of unknown nature) was applied between these two fermions. This conclusion is combined with the solution of a mathematical problem dealing with the equilibrium of identical repulsive particles (of one or two kinds) on one or more spheres like neutrons and protons on nuclear shells. Such particles are at equilibrium only for specific numbers of particles and, in addition, if these particles lie on the vertices of regular polyhedra or their derivative polyhedra. Finally, this result leads to a pictorial representation of the structure of all closed shell nuclei. This representation could be used as a laboratory for determining nuclear properties and corresponding wave functions.


Open Physics ◽  
2014 ◽  
Vol 12 (6) ◽  
Author(s):  
Amar Benchikha ◽  
Lyazid Chetouani

AbstractThe problem of normalization related to a Klein-Gordon particle subjected to vector plus scalar energy-dependent potentials is clarified in the context of the path integral approach. In addition the correction relating to the normalizing constant of wave functions is exactly determined. As examples, the energy dependent linear and Coulomb potentials are considered. The wave functions obtained via spectral decomposition, were found exactly normalized.


2004 ◽  
Vol 19 (31) ◽  
pp. 5435-5442 ◽  
Author(s):  
Y. S. KIM ◽  
MARILYN E. NOZ

The energy-momentum relations for massive and massless particles are E=p2/2m and E=pc respectively. According to Einstein, these two different expressions come from the same formula [Formula: see text]. Quarks and partons are believed to be the same particles, but they have quite different properties. Are they two different manifestations of the same covariant entity as in the case of Einstein's energy-momentum relation? The answer to this question is YES. It is possible to construct harmonic oscillator wave functions which can be Lorentz-boosted. They describe quarks bound together inside hadrons. When they are boosted to an infinite-momentum frame, these wave functions exhibit all the peculiar properties of Feynman's parton picture. This formalism leads to a parton distribution corresponding to the valence quarks, with a good agreement with the experimentally observed distribution.


Sign in / Sign up

Export Citation Format

Share Document