Auricular acupuncture induces FNDC5/irisin and attenuates obese inflammation in mice

2020 ◽  
Vol 38 (4) ◽  
pp. 264-271
Author(s):  
Yi Lu ◽  
Guohua Li

Objective: To investigate whether auricular acupuncture (AA) attenuates bodyweight and obese inflammation through the release of irisin from muscle tissue in mice. Methods: Sixty 4-week-old mice were fed a high fat diet (HFD) for 4 weeks. These animals were divided into six groups that remained untreated (HFD) or underwent electrical AA (HFD+EAA), sham EAA (HFD+SEAA), adrenalectomy (HFD+AD), adrenalectomy and EAA (HFD+AD+EAA), or adrenalectomy and injection of recombinant lentivirus expressing fibronectin type III domain-containing protein 5 (rFNDC) (HFD+AD+rFNDC) in the ninth week. The EAA and SEAA were performed at two traditional auricular acupuncture points daily for 4 weeks. An additional 10 mice fed a control diet were included as a normal control (NC) group. At the end of the study, norepinephrine (NE) in the serum, tumour necrosis factor α (TNFα) and interleukin 1β (IL-1β) in the serum and white adipose tissue, irisin in the serum and muscle, uncoupling protein-1 (UCP-1) in the brown adipose tissue (BAT), and FNDC5 in the muscle, were analysed. Results: The AD+EAA group exhibited better control of bodyweight and inflammation compared with the AD+SEAA and untreated HFD model groups (P<0.05), especially regarding the increased expression of NE, FNDC5, irisin and UCP-1 (P<0.05). After adrenalectomy, mice receiving EAA had less NE, FNDC5, irisin and UCP-1 as well as greater expression of inflammatory cytokines and bodyweight. However, lentiviral overexpression of rFNDC successfully reversed this situation in the AD mice and mimicked the effects of EAA on bodyweight, inflammation and expression of FNDC5, irisin and UCP-1, although it did not impact NE. Conclusions: EAA promoted NE release from the adrenal gland leading to further expression of FNDC5, irisin and UCP-1, which contributed to weight management and inflammatory inhibition.

2019 ◽  
Vol 51 (09) ◽  
pp. 608-617 ◽  
Author(s):  
Lucia Balagova ◽  
Jan Graban ◽  
Agnesa Puhova ◽  
Daniela Jezova

AbstractCatecholamine effects via β3-adrenergic receptors are important for the metabolism of the adipose tissue. Physical exercise is a core component of antiobesity regimens. We have tested the hypothesis that voluntary wheel running results in enhancement of β3-adrenergic receptor gene expression in the white and brown adipose tissues. The secondary hypothesis is that dietary tryptophan depletion modifies metabolic effects of exercise. Male Sprague-Dawley rats were assigned for sedentary and exercise groups with free access to running wheels for 3 weeks. All animals received normal control diet for 7 days. Both groups were fed either by low tryptophan (0.04%) diet or by control diet (0.2%) for next 2 weeks. The β3-adrenergic receptor mRNA levels in response to running increased in the retroperitoneal and epididymal fat pads. The gene expression of uncoupling protein-1 (UCP-1) was increased in the brown, while unchanged in the white fat tissues. Unlike control animals, the rats fed by low tryptophan diet did not exhibit a reduction of the white adipose tissue mass. Tryptophan depletion resulted in enhanced concentrations of plasma aldosterone and corticosterone, but had no influence on exercise-induced adrenal hypertrophy. No changes in β3-adrenergic receptor and cell proliferation measured by 5-bromo-2′-deoxyuridine incorporation in left heart ventricle were observed. The reduced β3-adrenergic receptor but not enhanced uncoupling protein-1 gene expression supports the hypothesis on hypoactive brown adipose tissue during exercise. Reduction in dietary tryptophan had no major influence on the exercise-induced changes in the metabolic parameters measured.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Ilse Yessabel Martinez Munoz ◽  
Eneida del Socorro Camarillo Romero ◽  
Jose de Jesus Garduno Garcia

The rising prevalence of chronic diseases such as type 2 diabetes and cardiovascular diseases owing to fat mass excess has been described. In recent years, muscle function/dysfunction has become relevant in metabolic homeostasis. Irisin was described as an exercise-induced myokine. It is the product of type I membrane protein cleavage encoded by the fibronectin type III domain containing 5 (FNDC5) gene. The main beneficial function attributable to irisin is the change of subcutaneous and visceral adipose tissue into brown adipose tissue, with a consequential increase in thermogenesis. Irisin has also been described as a hormone that may have a key role in glucose homeostasis. The way the association of type 2 diabetes with obesity occurs is not fully understood. In recent years, the possible pathways through which irisin could interact with other organs such as the brain or bone have been described. The present paper intends to review the new findings and possible new directions in irisin research.


Marine Drugs ◽  
2021 ◽  
Vol 19 (5) ◽  
pp. 278
Author(s):  
Tomomi Yamazaki ◽  
Dongyang Li ◽  
Reina Ikaga

Increasing energy expenditure (EE) is beneficial for preventing obesity. Diet-induced thermogenesis (DIT) is one of the components of total EE. Therefore, increasing DIT is effective against obesity. We examined how much fish oil (FO) increased DIT by measuring absolute values of DIT in mice. C57BL/6J male mice were given diets of 30 energy% fat consisting of FO or safflower oil plus butter as control oil (Con). After administration for 9 days, respiration in mice was monitored, and then the data were used to calculate DIT and EE. DIT increased significantly by 1.2-fold in the FO-fed mice compared with the Con-fed mice. Body weight gain was significantly lower in the FO-fed mice. FO increased the levels of uncoupling protein 1 (Ucp1) mRNA and UCP1 protein in brown adipose tissue (BAT) by 1.5- and 1.2-fold, respectively. In subcutaneous white adipose tissue (subWAT), the levels of Ucp1 mRNA and UCP1 protein were increased by 6.3- and 2.7-fold, respectively, by FO administration. FO also significantly increased the expression of markers of browning in subWAT such as fibroblast growth factor 21 and cell death-inducing DNA fragmentation factor α-like effector a. Thus, dietary FO seems to increase DIT in mice via the increased expressions of Ucp1 in BAT and induced browning of subWAT. FO might be a promising dietary fat in the prevention of obesity by upregulation of energy metabolism.


1994 ◽  
Vol 269 (10) ◽  
pp. 7435-7438
Author(s):  
D.L. Murdza-Inglis ◽  
M. Modriansky ◽  
H.V. Patel ◽  
G. Woldegiorgis ◽  
K.B. Freeman ◽  
...  

2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Shasika Jayarathne ◽  
Mandana Pahlavani ◽  
Latha Ramalingam ◽  
Shane Scoggin ◽  
Naima Moustaid-Moussa

Abstract Objectives Brown adipose tissue (BAT) regulates energy balance through thermogenesis, in part via uncoupling protein -1 (UCP-1). White adipose tissue (WAT), namely subcutaneous adipose tissue (SAT) can convert to a beige/brite adipose tissue phenotype (browning) under thermogenic conditions such as cold. We previously reported that eicosapentaenoic acid (EPA) reduced obesity and glucose intolerance, and increased UCP-1 in BAT of B6 mice at ambient temperature (22°C); and these effects were attenuated at thermoneutral environment (28–30°C). We hypothesized that EPA exerts anti-obesity effects on SAT, including increased browning, adipocyte hypotrophy; and these effects require UCP-1. Methods Six-week-old B6 wild type (WT) and UCP-1 knock-out (KO) male mice were maintained at thermoneutral environment and fed high fat diet (HF) with or without 36 g/kg of AlaskOmega EPA-enriched fish oil (800 mg/g) for 14 weeks; and SAT was collected for histological, gene and protein analyses. SAT was also prepared from chow diet-fed WT and KO mice at ambient environment to prepare stroma vascular cells, which were differentiated into adipocytes, treated with 100uM EPA for 48 hours then harvested for mRNA and protein analyses. Results KO mice fed HF diets had the highest body weight (P < 0.05) among all groups. EPA reduced fat cell size in both WT and KO mice fed the EPA diet. mRNA levels of fibroblast growth factor-21 (FGF-21) were higher in SAT of WT mice fed EPA compared to WT mice fed HF (P < 0.05), with no differences between the KO genotype. KO mice fed HF diets had lower levels of UCP-3 in SAT compared to WT mice fed HF (P < 0.05), which was rescued only in the KO mice fed EPA (P < 0.05). UCP-1 protein levels were very low in SAT tissues, and UCP-2 mRNA levels were similar across all groups in SAT. Interestingly, EPA significantly (P < 0.05) increased mRNA expression of UCP-2, UCP-3 and FGF21 in differentiated SAT adipocytes from both WT and KO compared to control. Furthermore, UCP-1 mRNA levels were significantly higher in WT adipocytes treated with EPA, compared to non-treated cells (P < 0.05). Additional mechanistic studies are currently underway to further dissect adipose depot differences in EPA effects in WT vs. KO mice. Conclusions Our data suggest that EPA increases SAT browning, independently of UCP-1. Funding Sources NIH/NCCIH.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Haiying Zhou ◽  
Bo Wan ◽  
Ivan Grubisic ◽  
Tommy Kaplan ◽  
Robert Tjian

Brown adipose tissue (BAT) plays an essential role in metabolic homeostasis by dissipating energy via thermogenesis through uncoupling protein 1 (UCP1). Previously, we reported that the TATA-binding protein associated factor 7L (TAF7L) is an important regulator of white adipose tissue (WAT) differentiation. In this study, we show that TAF7L also serves as a molecular switch between brown fat and muscle lineages in vivo and in vitro. In adipose tissue, TAF7L-containing TFIID complexes associate with PPARγ to mediate DNA looping between distal enhancers and core promoter elements. Our findings suggest that the presence of the tissue-specific TAF7L subunit in TFIID functions to promote long-range chromatin interactions during BAT lineage specification.


2004 ◽  
Vol 18 (9) ◽  
pp. 2302-2311 ◽  
Author(s):  
Michael A. Nolan ◽  
Maria A. Sikorski ◽  
G. Stanley McKnight

Abstract Mice lacking the RIIβ regulatory subunit of protein kinase A exhibit a 50% reduction in white adipose tissue stores compared with wild-type littermates and are resistant to diet-induced obesity. RIIβ−/− mice also have an increase in resting oxygen consumption along with a 4-fold increase in the brown adipose-specific mitochondrial uncoupling protein 1 (UCP1). In this study, we examined the basis for UCP1 induction and tested the hypothesis that the induced levels of UCP1 in RIIβ null mice are essential for the lean phenotype. The induction of UCP1 occurred at the protein but not the mRNA level and correlated with an increase in mitochondria in brown adipose tissue. Mice lacking both RIIβ and UCP1 (RIIβ−/−/Ucp1−/−) were created, and the key parameters of metabolism and body composition were studied. We discovered that RIIβ−/− mice exhibit nocturnal hyperactivity in addition to the increased oxygen consumption at rest. Disruption of UCP1 in RIIβ−/− mice reduced basal oxygen consumption but did not prevent the nocturnal hyperactivity. The double knockout animals also retained the lean phenotype of the RIIβ null mice, demonstrating that induction of UCP1 and increased resting oxygen consumption is not the cause of leanness in the RIIβ mutant mice.


Sign in / Sign up

Export Citation Format

Share Document