scholarly journals P98 Semi-quantification and localization of membrane transporters in paediatric kidney tissue

2019 ◽  
Vol 104 (6) ◽  
pp. e58.1-e58
Author(s):  
M van Borselen ◽  
B van Groen ◽  
J Pertijs ◽  
M Wilmer ◽  
B Smeets ◽  
...  

BackgroundThe kidney has a critical role in disposition, efficacy and toxicity of drugs and xenobiotics. Developmental changes of renal membrane transporters have the potential to explain population variability in paediatric pharmacokinetics and -dynamics of drugs but data are missing. We aimed to further delineate the expression of human renal tubular transporters multidrug resistance-associated protein (MRP) 4 and MRP2 and study localization in paediatric kidney samples.MethodsWe planned to semi-quantify expression levels and to study the age-specific localization of the transporters MRP4 and MRP2 with immunohistochemistry on 44 human neonatal and paediatric kidney samples with age range of 24,00 - 40,00 weeks gestational age (GA) and 0,29 - 744 weeks post-natal age (PNA). The staining intensity was semi-quantitatively scored by two independent observers (MB and BG).ResultsMRP4 is found to be localized at the apical membrane of the renal proximal tubules at 27 weeks of GA (n=3, 1,29- 4 weeks PNA) and no age-related changes of expression levels were detected. In a premature neonate of 24 weeks GA (n=1), no MRP4 was detected. The MRP2 staining did not meet the requirements to be scored and was rejected.ConclusionMRP4 is expressed from at least 27 weeks GA onwards and does not show developmental changes. The localization was similar as in adults (Ritter et al., 2005). The half-life of the MRP4 substrate furosemide was found to be 6 to 20-fold longer in neonates than in adults (Pacifici, G.M., 2013). This could potentially be linked with the absence of MRP4 in a premature neonate with GA 24 weeks. However, these data should be confirmed as we only had 1 sample of ±24 weeks GA available. Moreover, our data help us in understanding altered disposition of transporter substrates in paediatrics.ReferencesPacifici, G. M. ( 2013). Clinical pharmacology of furosemide in neonates: a review. Pharmaceuticals;6(9):1094–1129.Ritter CA, Jedlitschky G, Meyer zu Schwabedissen H, Grube M, Köck K, & Kroemer HK. ( 2005). Cellular export of drugs and signaling molecules by the ATP-binding cassette transporters MRP4 (ABCC4) and MRP5 (ABCC5). Drug metabolism reviews;37(1):253–278.Disclosure(s)Nothing to disclose

2020 ◽  
Vol 21 (9) ◽  
pp. 846-859
Author(s):  
Mohd Saeed ◽  
Mohd Adnan Kausar ◽  
Rajeev Singh ◽  
Arif J. Siddiqui ◽  
Asma Akhter

Glycation refers to the covalent binding of sugar molecules to macromolecules, such as DNA, proteins, and lipids in a non-enzymatic reaction, resulting in the formation of irreversibly bound products known as advanced glycation end products (AGEs). AGEs are synthesized in high amounts both in pathological conditions, such as diabetes and under physiological conditions resulting in aging. The body’s anti-glycation defense mechanisms play a critical role in removing glycated products. However, if this defense system fails, AGEs start accumulating, which results in pathological conditions. Studies have been shown that increased accumulation of AGEs acts as key mediators in multiple diseases, such as diabetes, obesity, arthritis, cancer, atherosclerosis, decreased skin elasticity, male erectile dysfunction, pulmonary fibrosis, aging, and Alzheimer’s disease. Furthermore, glycation of nucleotides, proteins, and phospholipids by α-oxoaldehyde metabolites, such as glyoxal (GO) and methylglyoxal (MGO), causes potential damage to the genome, proteome, and lipidome. Glyoxalase-1 (GLO-1) acts as a part of the anti-glycation defense system by carrying out detoxification of GO and MGO. It has been demonstrated that GLO-1 protects dicarbonyl modifications of the proteome and lipidome, thereby impeding the cell signaling and affecting age-related diseases. Its relationship with detoxification and anti-glycation defense is well established. Glycation of proteins by MGO and GO results in protein misfolding, thereby affecting their structure and function. These findings provide evidence for the rationale that the functional modulation of the GLO pathway could be used as a potential therapeutic target. In the present review, we summarized the newly emerged literature on the GLO pathway, including enzymes regulating the process. In addition, we described small bioactive molecules with the potential to modulate the GLO pathway, thereby providing a basis for the development of new treatment strategies against age-related complications.


2019 ◽  
Vol 19 (10) ◽  
pp. 705-718 ◽  
Author(s):  
Naima Mansoor ◽  
Fazli Wahid ◽  
Maleeha Azam ◽  
Khadim Shah ◽  
Anneke I. den Hollander ◽  
...  

: Age-related macular degeneration (AMD) is an eye disorder affecting predominantly the older people above the age of 50 years in which the macular region of the retina deteriorates, resulting in the loss of central vision. The key factors associated with the pathogenesis of AMD are age, smoking, dietary, and genetic risk factors. There are few associated and plausible genes involved in AMD pathogenesis. Common genetic variants (with a minor allele frequency of >5% in the population) near the complement genes explain 40–60% of the heritability of AMD. The complement system is a group of proteins that work together to destroy foreign invaders, trigger inflammation, and remove debris from cells and tissues. Genetic changes in and around several complement system genes, including the CFH, contribute to the formation of drusen and progression of AMD. Similarly, Matrix metalloproteinases (MMPs) that are normally involved in tissue remodeling also play a critical role in the pathogenesis of AMD. MMPs are involved in the degradation of cell debris and lipid deposits beneath retina but with age their functions get affected and result in the drusen formation, succeeding to macular degeneration. In this review, AMD pathology, existing knowledge about the normal and pathological role of complement system proteins and MMPs in the eye is reviewed. The scattered data of complement system proteins, MMPs, drusenogenesis, and lipofusogenesis have been gathered and discussed in detail. This might add new dimensions to the understanding of molecular mechanisms of AMD pathophysiology and might help in finding new therapeutic options for AMD.


2020 ◽  
Vol 17 ◽  
Author(s):  
Christina Karakosta ◽  
Argyrios Tzamalis ◽  
Michalis Aivaliotis ◽  
Ioannis Tsinopoulos

Background/Objective:: The aim of this systematic review is to identify all the available data on human lens proteomics with a critical role to age-related cataract formation in order to elucidate the physiopathology of the aging lens. Materials and Methods:: We searched on Medline and Cochrane databases. The search generated 328 manuscripts. We included nine original proteomic studies that investigated human cataractous lenses. Results:: Deamidation was the major age-related post-translational modification. There was a significant increase in the amount of αA-crystallin D-isoAsp58 present at all ages, while an increase in the extent of Trp oxidation was apparent in cataract lenses when compared to aged normal lenses. During aging, enzymes with oxidized cysteine at critical sites included GAPDH, glutathione synthase, aldehyde dehydrogenase, sorbitol dehydrogenase, and PARK7. Conclusion:: D-isoAsp in αA crystallin could be associated with the development of age-related cataract in human, by contributing to the denaturation of a crystallin, and decreasing its ability to act as a chaperone. Oxidation of Trp may be associated with nuclear cataract formation in human, while the role of oxidant stress in age-related cataract formation is dominant.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Eloá Borges Luna ◽  
Pâmella Pinho Montovani ◽  
Rafaela Elvira Rozza-de-Menezes ◽  
Karin Soares Cunha

AbstractIntroductionNeurofibromin, a protein encoded by theNF1gene, is mutated in neurofibromatosis 1, one of the most common genetic diseases. Oral manifestations are common and a high prevalence of hyposalivation was recently described in individuals with neurofibromatosis 1. Although neurofibromin is ubiquitously expressed, its expression levels vary depending on the tissue type and developmental stage of the organism. The role of neurofibromin in the development, morphology, and physiology of salivary glands is unknown and a detailed expression of neurofibromin in human normal salivary glands has never been investigated.AimTo investigate the expression levels and distribution of neurofibromin in acinar and ductal cells of major and minor salivary glands of adult individuals without NF1.Material and methodTen samples of morphologically normal major and minor salivary glands (three samples of each gland: parotid, submandibular and minor salivary; and one sample of sublingual gland) from individuals without neurofibromatosis 1 were selected to assess neurofibromin expression through immunohistochemistry. Immunoquantification was performed by a digital method.ResultsNeurofibromin was expressed in the cytoplasm of both serous and mucous acinar cells, as well as in ducts from all the samples of salivary glands. Staining intensity varied from mild to strong depending on the type of salivary gland and region (acini or ducts). Ducts had higher neurofibromin expression than acinar cells (p = 0.003). There was no statistical association between the expression of neurofibromin and the type of the salivary gland, considering acini (p = 0.09) or ducts (p = 0.50) of the four salivary glands (parotid, submandibular, minor salivary, and sublingual gland). Similar results were obtained comparing the acini (p = 0.35) and ducts (p = 0.50) of minor and major salivary glands. Besides, there was no correlation between the expression of neurofibromin and age (p = 0.08), and sex (p = 0.79) of the individuals, considering simultaneously the neurofibromin levels of acini and duct (n = 34).ConclusionNeurofibromin is expressed in the cytoplasm of serous and mucous acinar cells, and ductal cells of salivary glands, suggesting that this protein is important for salivary gland function.


Author(s):  
Sabrina C. Behr ◽  
Christopher Platen ◽  
Pascal Vetter ◽  
Nicole Heussen ◽  
Steffen Leonhardt ◽  
...  

Abstract Background Magnetic induction measurement (MIM) is a noninvasive method for the contactless registration of respiration in newborn piglets by using measurement coils positioned at the bottom of an incubator. Acute pulmonary problems may be determinants of poor neurological and psychomotor outcomes in preterm infants. The current study tested the detection of pulmonary ventilation disorders via MIM in 11 newborn piglets. Methods Six measurement coils determined changes in magnetic induction, depending on the ventilation of the lung, in comparison with flow resistance. Contactless registration of induced acute pulmonary ventilation disorders (apnea, atelectasis, pneumothorax, and aspiration) was detected by MIM. Results All pathologies except aspiration were detected by MIM. Significant changes occurred after induction of apnea (three coils), malposition of the tube (one coil), and pneumothorax (three coils) (p ≤ 0.05). No significant changes occurred after induction of aspiration (p = 0.12). Conclusions MIM seems to have some potential to detect acute ventilation disorders in newborn piglets. The location of the measurement coil related to the animal’s position plays a critical role in this process. In addition to an early detection of acute pulmonary problems, potential information pointing to a therapeutic intervention, for example, inhalations or medical respiratory analepsis, may be conceivable with MIM in the future. Impact MIM seems to be a method in which noncontact ventilation disorders of premature and mature infants can be detected. This study is an extension of the experimental setup to obtain preliminary evidence for detection of respiratory activity in neonatal piglets. For the first time, MIM is used to register acute ventilation problems of neonates. The possibility of an early detection of acute ventilation problems via MIM may provide an opportunity to receive patient-side information for therapeutical interventions like inhalations or medical respiratory analepsis.


2009 ◽  
Vol 297 (2) ◽  
pp. H576-H582 ◽  
Author(s):  
Qibin Jiao ◽  
Yunzhe Bai ◽  
Toru Akaike ◽  
Hiroshi Takeshima ◽  
Yoshihiro Ishikawa ◽  
...  

Sarcalumenin (SAR), a Ca2+-binding protein located in the longitudinal sarcoplasmic reticulum (SR), regulates Ca2+ reuptake into the SR by interacting with cardiac sarco(endo)plasmic reticulum Ca2+-ATPase 2a (SERCA2a). We have previously demonstrated that SAR deficiency induced progressive heart failure in response to pressure overload, despite mild cardiac dysfunction in sham-operated SAR knockout (SARKO) mice ( 26 ). Since responses to physiological stresses often differ from those to pathological stresses, we examined the effects of endurance exercise on cardiac function in SARKO mice. Wild-type (WT) and SARKO mice were subjected to endurance treadmill exercise training (∼65% of maximal exercise ability for 60 min/day) for 12 wk. After exercise training, maximal exercise ability was significantly increased by 5% in WT mice ( n = 6), whereas it was significantly decreased by 37% in SARKO mice ( n = 5). Cardiac function assessed by echocardiographic examination was significantly decreased in accordance with upregulation of biomarkers of cardiac stress in SARKO mice after training. After training, expression levels of SERCA2a protein were significantly downregulated by 30% in SARKO hearts, whereas they were significantly upregulated by 59% in WT hearts. Consequently, SERCA2 activity was significantly decreased in SARKO hearts after training. Furthermore, the expression levels of other Ca2+-handling proteins, including phospholamban, ryanodine receptor 2, calsequestrin 2, and sodium/calcium exchanger 1, were significantly decreased in SARKO hearts after training. These results indicate that SAR plays a critical role in maintaining cardiac function under physiological stresses, such as endurance exercise, by regulating Ca2+ transport activity into the SR. SAR may be a primary target for exercise-related adaptation of the Ca2+ storage system in the SR to preserve cardiac function.


Cartilage ◽  
2021 ◽  
pp. 194760352110495
Author(s):  
Lei Ding ◽  
Cheng Zhou ◽  
Hongjun Zheng ◽  
Quanming Wang ◽  
Haiyan Song ◽  
...  

Objective: To delineate the response of migrating chondrogenic progenitor cells (CPCs) that arose from the surface of mechanically injured articular cartilage to proinflammatory damage-associated-molecular-patterns (DAMPs). Design: Bovine CPCs and non-CPC chondrocytes isolated from either impacted or scratched articular cartilage were studied. Those 2 types of cells were treated with mitochondrial DAMPs (MTDs; 10 nM fMLF and 10 µg/mL CpG DNA), or 10 nM HMGB1, or 10 ng/mL IL-1b for 24 hours. At the end of experiments, conditioned media and cell lysates were collected for analysis of expression levels of matrix metalloproteinases (MMPs), chemokines, and cytokines that are associated with cartilage degeneration with Western blotting and quantitative polymerase chain reaction. The difference of expression levels was compared by Welch’s t-test. Results: Our data indicated that HMGB1 and MTDs remarkably upregulated pro-MMP-13 expression in CPCs. Compared with non-CPCs, CPCs expressed significantly more baseline mRNAs of MMP-13, CXCL12, and IL-6. MTDs greatly increased the expression of MMP-13 and IL-6 in CPCs by over 100-fold ( P < 0.001). MTDs also significantly increased IL-8 expression in CPCs to a similar extent ( P < 0.001). However, when IL-1b was present, CPCs expressed less MMP-3 and active MMP-13 proteins as well as less CCL2 and IL-6 than did non-CPCs. Conclusions: We concluded that CPCs were more sensitive than non-CPCs in response to DAMPs, especially MTDs. The proinflammatory nature of CPCs implied their critical role in the early phase of posttraumatic osteoarthritis development.


2021 ◽  
Vol 135 (20) ◽  
pp. 2357-2376
Author(s):  
Wei Yan Ng ◽  
Shihao Zhang ◽  
Zhaoran Wang ◽  
Charles Jit Teng Ong ◽  
Dinesh V. Gunasekeran ◽  
...  

Abstract Ophthalmology has been one of the early adopters of artificial intelligence (AI) within the medical field. Deep learning (DL), in particular, has garnered significant attention due to the availability of large amounts of data and digitized ocular images. Currently, AI in Ophthalmology is mainly focused on improving disease classification and supporting decision-making when treating ophthalmic diseases such as diabetic retinopathy, age-related macular degeneration (AMD), glaucoma and retinopathy of prematurity (ROP). However, most of the DL systems (DLSs) developed thus far remain in the research stage and only a handful are able to achieve clinical translation. This phenomenon is due to a combination of factors including concerns over security and privacy, poor generalizability, trust and explainability issues, unfavorable end-user perceptions and uncertain economic value. Overcoming this challenge would require a combination approach. Firstly, emerging techniques such as federated learning (FL), generative adversarial networks (GANs), autonomous AI and blockchain will be playing an increasingly critical role to enhance privacy, collaboration and DLS performance. Next, compliance to reporting and regulatory guidelines, such as CONSORT-AI and STARD-AI, will be required to in order to improve transparency, minimize abuse and ensure reproducibility. Thirdly, frameworks will be required to obtain patient consent, perform ethical assessment and evaluate end-user perception. Lastly, proper health economic assessment (HEA) must be performed to provide financial visibility during the early phases of DLS development. This is necessary to manage resources prudently and guide the development of DLS.


Sign in / Sign up

Export Citation Format

Share Document