Abnormal expression of the genes involved in cytokine networks and mitochondrial function in systemic juvenile idiopathic arthritis identified by DNA microarray analysis

2008 ◽  
Vol 68 (2) ◽  
pp. 264-272 ◽  
Author(s):  
S Ishikawa ◽  
T Mima ◽  
C Aoki ◽  
N Yoshio-Hoshino ◽  
Y Adachi ◽  
...  

Objectives:Systemic juvenile idiopathic arthritis (sJIA) is a rheumatic disease in childhood characterised by systemic symptoms and a relatively poor prognosis. Peripheral leukocytes are thought to play a pathological role in sJIA although the exact cause of the disease is still obscure. In this study, we aimed to clarify cellular functional abnormalities in sJIA.Methods:We analysed the gene expression profile in peripheral leukocytes from 51 patients with sJIA, 6 patients with polyarticular type JIA (polyJIA) and 8 healthy children utilising DNA microarrays. Gene ontology analysis and network analysis were performed on the genes differentially expressed in sJIA to clarify the cellular functional abnormalities.Result:A total of 3491 genes were differentially expressed in patients with sJIA compared to healthy individuals. They were functionally categorised mainly into a defence response group and a metabolism group according to gene ontology, suggesting the possible abnormalities in these functions. In the defence response group, molecules predominantly constituting interferon (IFN)γ and tumour necrosis factor (TNF) network cascades were upregulated. In the metabolism group, oxidative phosphorylation-related genes were downregulated, suggesting a mitochondrial disorder. Expression of mitochondrial DNA-encoded genes including cytochrome c oxidase subunit 1(MT-CO1) and MT-CO2 were suppressed in patients with sJIA but not in patients with polyJIA or healthy children. However, nuclear DNA-encoded cytochrome c oxidases were intact.Conclusion:Our findings suggest that sJIA is not only an immunological disease but also a metabolic disease involving mitochondria disorder.

2021 ◽  
Author(s):  
Hironori Sato ◽  
Yuzaburo Inoue ◽  
Yusuke Kawashima ◽  
Daisuke Nakajima ◽  
Ren Nakamura ◽  
...  

Abstract Systemic juvenile idiopathic arthritis (sJIA) is an autoinflammatory disease caused by high production of inflammatory cytokines. Conventional biomarkers, such as IL-18 are reportedly not always associated with frequent relapses or complication with macrophage activation syndrome (MAS). As few specific biomarkers that can indicate and evaluate the sJIA disease activity have been identified, the discovery of biomarkers is very important. We performed a deep proteomic analysis of serum samples from nine patients with sJIA using highly sensitive mass spectrometry, and identified differentially expressed proteins in various disease phases. We selected 68 proteins (URPs) that were highly expressed in the active phase from total of 2,727 proteins. Pathway analysis revealed that the URPs included proteins related to many immune process and proteasome proteins, which might be associated with the pathogenesis of sJIA. Based on these results, four proteins (leucine aminopeptidase 3; LAP3, guanylate-binding protein 1; GBP1, Heme oxygenase 1; HMOX1, and bone morphogenetic protein 10; BMP10), which exhibit high fold changes during the active phase or which might be core proteins in the functional network were selected as candidate biomarkers. These proteins may be clinically useful for diagnostic and therapeutic purposes and might help determine the pathogenesis of the disease.


2018 ◽  
Author(s):  
Erika Van Nieuwenhove ◽  
Vasiliki Lagou ◽  
Lien Van Eyck ◽  
James Dooley ◽  
Ulrich Bodenhofer ◽  
...  

AbstractJuvenile idiopathic arthritis (JIA) is the most common childhood rheumatic disease, with a strongly debated pathophysiological origin. Both adaptive and innate immune processes have been proposed as primary drivers, which may account for the observed clinical heterogeneity, but few high-depth studies have been performed. Here we profiled the adaptive immune system of 85 JIA patients and 43 age-matched controls, identifying immunological changes unique to JIA and others common across a broad spectrum of childhood inflammatory diseases. The JIA immune signature was shared between clinically distinct subsets, but was accentuated in the systemic JIA patients and those patients with active disease. Despite the extensive overlap in the immunological spectrum exhibited by healthy children and JIA patients, machine learning analysis of the dataset proved capable of diagnosis of JIA patients with ~90% accuracy. These results pave the way for large-scale longitudinal studies of JIA, where machine learning could be used to predict immune signatures that correspond to treatment response group.


2016 ◽  
Vol 43 (8) ◽  
pp. 1607-1614 ◽  
Author(s):  
Juan Sun ◽  
Miao Feng ◽  
Fengqi Wu ◽  
Xiaolin Ma ◽  
Jie Lu ◽  
...  

Objective.We sought to identify specific microRNA (miRNA) for systemic juvenile idiopathic arthritis (sJIA) and to determine the involvement of these miRNA in regulating the expression of cytokines.Methods.Microarray profiling was performed to identify differentially expressed miRNA in sJIA plasma. Levels of candidate miRNA and mRNA were assessed by real-time PCR, and cytokines were measured by ELISA. Dual-luciferase reporter assay was used to validate the direct interaction between miR-26a and interleukin 6 (IL-6).Results.Forty-eight miRNA were differentially expressed in the plasma of patients with sJIA compared with healthy controls (HC). Five miRNA were selected for further validation. The expression level of miR-26a was exclusively elevated in the plasma of patients with sJIA as compared with 4 rheumatic diseases and 2 subtypes of JIA (oligoarticular and polyarticular). The levels of IL-6, IL-1β, and tumor necrosis factor-α in the plasma of patients with sJIA were increased, and only IL-6 presented a positive correlation with miR-26a (r = 0.539, p < 0.0001). After stimulation with IL-6, miR-26a expression was upregulated in THP-1 cells, while the supernatant level of IL-6 was downregulated by transfection of miR-26a mimics. Consistently, direct target relationship between miR-26a and IL-6 was confirmed.Conclusion.This study demonstrates that miR-26a is expressed specifically and highly in sJIA plasma and suggests that miR-26a may regulate the levels of cytokines in sJIA. Our findings highlight miR-26a as a potential biomarker for the diagnosis as well as differential diagnosis of sJIA.


Author(s):  
В.Н. Сахаров ◽  
П.Ф. Литвицкий ◽  
Е.И. Алексеева ◽  
Н.А. Маянский ◽  
Р.Ш. Закиров

Цель исследования - изучение перепрограммирования мононуклеарных лейкоцитов на модели системного ювенильного идиопатического артрита (сЮИА), воспроизводимой у крыс Wistar с использованием полного адъюванта Фрейнда и липополисахарида. Методика. сЮИА воспроизведен у 6-месячных крыс-самцов Wistar. На 40-е сут. эксперимента животные были разделены на 3 группы: 1-я группа - контроль; 2-я - группа доксициклина; 3-я - группа дексаметазона. Взятие проб крови у животных проводили на нулевые, 41-е и 55-е сут. Мононуклеарные клетки периферической крови выделяли гравиметрически, после чего окрашивали их на маркеры и внутриклеточные цитокины. Дифференцировали моноциты (CD3-CD4+) и Т-хелперы (CD3+CD4+). Анализировали динамику внутриклеточной экспрессии интерлейкина IL-4 (рассматривали как маркер про-М2 фенотипа, так как в случае выделения из клетки ИЛ-4 служит стимулятором М2 поляризации макрофагов) и IFN-g (как маркер про-М1 фенотипа) по данным проточной цитофлуориметрии. Применяли непараметрический статистический тест Mann-Whitney-Wilcoxon в программе R для статистической обработки данных. Результаты и заключение. При моделировании сЮИА выявлено закономерное изменение фенотипа моноцитов. Применение же доксициклина и дексаметазона приводило к более ранней поляризации их по про-М2-пути в отношении моноцитов (на 41-е сут.) в сравнении с контролем. Про-М1 эффект (на 55-е сут., в сравнении с контролем) выявлен также в группах доксициклина и дексаметазона. У животных разных групп обнаружены характерные динамические изменения внутриклеточной экспрессии цитокинов. Важно, что различная направленность поляризации фенотипа при сЮИА и применении препаратов наблюдается не только у моноцитов, но и у Т-хелперов. The study objective was to evaluate targeted reprogramming of peripheral blood mononuclear cells in systemic juvenile idiopathic arthritis (sJIA) modeled in 6-month-old male Wistar rats by co-administration of complete Freund’s adjuvant and lipopolysaccharide. Methods. On day 40 of the experiment, rats were divided into three groups: control, doxycycline, and dexamethasone groups. Blood samples were collected on days 0, 41, and 55. Peripheral blood mononuclear cells were isolated gravimetrically and stained for markers and cytokines. Monocytes (CD3-CD4+) and T-helpers (CD3+CD4+) were differentiated as target cells. IL-4 was considered a marker for the pro-M2 phenotype since IL-4 can activate M2 macrophage polarization; IFN-g was considered a marker for the pro-M1 phenotype. Time-related changes in the intracellular expression of IL-4 and IFN-g were studied using flow cytometry. Data were analyzed using nonparametric statistical tests (Mann-Whitney-Wilcoxon) in the R environment for statistical computing. Results and conclusions. Monocytes (like macrophages) underwent reprogramming during the development of modeled sJIA disease. In monocytes of doxycycline and dexamethasone treatment groups, pro-M2 effects were observed earlier (day 41) than in the control group. Pro-M1 effects were observed in monocytes of doxycycline and dexamethasone groups on day 55, as compared with the control group. Characteristic time-related changes of intracellular cytokine expression were described for different groups. Importantly, the differently directed phenotype polarization was observed in sJIA and treatment groups for both monocytes and T-helpers.


2019 ◽  
Vol 20 (13) ◽  
pp. 1147-1154 ◽  
Author(s):  
Ling Chen ◽  
Qian Li ◽  
Xun Lu ◽  
Xiaohua Dong ◽  
Jingyun Li

<P>Objective: MicroRNA (miR)-340-5p has been identified to play a key role in several cancers. However, the function of miR-340-5p in skin fibroblasts remains largely unknown. </P><P> Methods: Gain of function experiments were performed by infecting normal skin fibroblast cells with a lentivirus carrying 22-bp miR-340-5p. Cell proliferation was detected by Cell Counting Kit-8 (CCK-8) assay. To uncover the mechanisms, mRNA-seq was used. Differentially expressed mRNAs were further determined by Gene Ontology and KEGG pathway analyses. The protein levels were analysed by Western blotting. A dual-luciferase reporter assay was used to detect the direct binding of miR-340-5p with the 3&#039;UTR of Kruppel-like factor 2 (KLF2). </P><P> Results: MiR-340-5p lentivirus infection suppressed normal skin fibroblast proliferation. The mRNAseq data revealed that 41 mRNAs were differentially expressed, including 22 upregulated and 19 downregulated transcripts in the miR-340-5p overexpression group compared with those in the control group. Gene Ontology and KEGG pathway analyses revealed that miR-340-5p overexpression correlated with the macromolecule biosynthetic process, cellular macromolecule biosynthetic process, membrane, and MAPK signalling pathway. Bioinformatics analysis and luciferase reporter assays showed that miR-340-5p binds to the 3&#039;UTR of KLF2. Forced expression of miR-340-5p decreased the expression of KLF2 in normal skin fibroblasts. Overexpression of KLF2 restored skin fibroblast proliferation in the miR-340-5p overexpression group. </P><P> Conclusion: This study demonstrates that miR-340-5p may suppress skin fibroblast proliferation, possibly through targeting KLF2. These findings could help us understand the function of miR-340-5p in skin fibroblasts. miR-340-5p could be a therapeutic target for preventing scarring.</P>


Sign in / Sign up

Export Citation Format

Share Document