Clinical efficacy with dabrafenib and trametinib in a T599_V600insT poorly differentiated metastatic thyroid carcinoma

2021 ◽  
Vol 14 (8) ◽  
pp. e243264
Author(s):  
Chung-Shien Lee ◽  
Emily Miao ◽  
Kasturi Das ◽  
Nagashree Seetharamu

BRAF (v-raf murine sarcoma viral oncogene homolog B1) and MEK (mitogen-activated protein kinase kinase) inhibitors have been shown to improve clinical outcomes in tumours presenting with mutations in the BRAF gene. The most common form of BRAF mutation is V600E/K and has been shown to occur in thyroid cancers. Treatment data for patients harbouring less frequent BRAF mutations are limited. In vitro studies have shown that mutations in codons 599–601 increase kinase activity similar to that in V600E mutations, which suggests that BRAF and MEK inhibitors could be an effective treatment option. Here, we report a case of a patient with thyroid carcinoma harbouring a rare amino acid insertion in codon 599 of the BRAF gene (T599_V600insT) treated with a BRAF and MEK inhibitor.

2001 ◽  
Vol 280 (2) ◽  
pp. L354-L362 ◽  
Author(s):  
Pamela M. Lindroos ◽  
Yi-Zhe Wang ◽  
Annette B. Rice ◽  
James C. Bonner

Upregulation of the platelet-derived growth factor (PDGF) receptor-α (PDGFR-α) is a mechanism of myofibroblast hyperplasia during pulmonary fibrosis. We previously identified interleukin (IL)-1β as a major inducer of the PDGFR-α in rat pulmonary myofibroblasts in vitro. In this study, we report that staurosporine, a broad-spectrum kinase inhibitor, upregulates PDGFR-α gene expression and protein. A variety of other kinase inhibitors did not induce PDGFR-α expression. Staurosporine did not act via an IL-1β autocrine loop because the IL-1 receptor antagonist protein did not block staurosporine-induced PDGFR-α expression. Furthermore, staurosporine did not activate a variety of signaling molecules that were activated by IL-1β, including nuclear factor-κB, extracellular signal-regulated kinase, and c-Jun NH2-terminal kinase. However, both staurosporine- and IL-1β-induced phosphorylation of p38 mitogen-activated protein kinase and upregulation of PDGFR-α by these two agents was inhibited by the p38 inhibitor SB-203580. Finally, staurosporine inhibited basal and PDGF-stimulated mitogenesis over the same concentration range that induced PDGFR-α expression. Collectively, these data demonstrate that staurosporine is a useful tool for elucidating the signaling mechanisms that regulate PDGFR expression in lung connective tissue cells and possibly for evaluating the role of the PDGFR-α as a growth arrest-specific gene.


2009 ◽  
Vol 419 (3) ◽  
pp. 669-679 ◽  
Author(s):  
Yongzheng Wu ◽  
Sheldon I. Feinstein ◽  
Yefim Manevich ◽  
Ibrul Chowdhury ◽  
Jhang Ho Pak ◽  
...  

Prdx6 (peroxiredoxin 6), a bifunctional protein with both GSH peroxidase and PLA2 (phospholipase A2) [aiPLA2 (acidic calcium-independent PLA2)] activities, is responsible for the metabolism of lung surfactant phospholipids. We propose that the aiPLA2 activity of the enzyme is regulated through phosphorylation. Incubation of isolated rat alveolar type II cells (AECII) with PMA, a PKC (protein kinase C) agonist, had no effect on Prdx6 expression but led to ∼75% increase in aiPLA2 activity that was abolished by pretreatment of cells with the MAPK (mitogen-activated protein kinase) inhibitors, SB202190 or PD98059. Prdx6 phosphorylation after incubation of AECII with PMA was demonstrated by autoradiography after immunoprecipitation with either anti-phosphothreonine o-phosphoserine antibodies. in vitro, several active isoforms of ERK (extracellular-signal-regulated kinase) and p38 phosphorylated Prdx6, resulting in an 11-fold increase in aiPLA2 activity. The increased activity was calcium-independent and was abolished by the aiPLA2 inhibitors, surfactant protein A and hexadecyl-3-trifluorethylglycero-sn-2-phospho-methanol (MJ33). The peroxidase activity of Prdx6 was unaffected by phosphorylation. Mass spectroscopic analysis of in vitro phosphorylated Prdx6 showed a unique phosphorylation site at Thr-177 and mutation of this residue abolished protein phosphorylation and the increase in MAPK-mediated activity. These results show that the MAPKs can mediate phosphorylation of Prdx6 at Thr-177 with a consequent marked increase in its aiPLA2 activity.


2006 ◽  
Vol 11 (4) ◽  
pp. 423-434 ◽  
Author(s):  
Charlotta Grånäs ◽  
Betina Kerstin Lundholt ◽  
Frosty Loechel ◽  
Hans-Christian Pedersen ◽  
Sara Petersen Bjørn ◽  
...  

The RAS-mitogen-activated protein kinase (MAPK) signaling pathway has a central role in regulating the proliferation and survival of both normal and tumor cells. This pathway has been 1 focus area for the development of anticancer drugs, resulting in several compounds, primarily kinase inhibitors, in clinical testing. The authors have undertaken a cell-based, high-throughput screen using a novel ERF1 Redistribution® assay to identify compounds that modulate the signaling pathway. The hit compounds were subsequently tested for activity in a functional cell proliferation assay designed to selectively detect compounds inhibiting the proliferation of MAPK pathway-dependent cancer cells. The authors report the identification of 2 cell membrane-permeable compounds that exhibit activity in the ERF1 Redistribution® assay and selectively inhibit proliferation of MAPK pathway-dependent malignant melanoma cells at similar potencies (IC50 =< 5 μM). These compounds have drug-like structures and are negative in RAF, MEK, and ERK in vitro kinase assays. Drugs belonging to these compound classes may prove useful for treating cancers caused by excessive MAPK pathway signaling. The results also show that cell-based, high-content Redistribution® screens can detect compounds with different modes of action and reveal novel targets in a pathway known to be disease relevant.


Author(s):  
William E. Tidyman ◽  
Alice F. Goodwin ◽  
Yoshiko Maeda ◽  
Ophir D. Klein ◽  
Katherine A. Rauen

Costello syndrome (CS) is a congenital disorder caused by heterozygous activating germline HRAS mutations in the canonical Ras/mitogen-activated protein kinase (Ras/MAPK) pathway. CS is one of the RASopathies, a large group of syndromes due to mutations within various components of the Ras/MAPK pathway. An important part of the phenotype that greatly impacts quality of life is hypotonia. To gain a better understanding of the mechanisms underlying hypotonia in CS, a mouse model with an activating HrasG12V allele was utilized. We identified a skeletal myopathy that was due in part to an inhibition of embryonic myogenesis and myofiber formation, resulting in a reduction of myofiber size and number that led to reduced muscle mass and strength. In addition to hyperactivation of the Ras/MAPK and PI3K/AKT pathways, there was a significant reduction of p38 signaling, as well as global transcriptional alterations consistent with the myopathic phenotype. Inhibition of Ras/MAPK pathway signaling using a MEK inhibitor rescued the HrasG12V myopathy phenotype both in vitro and in vivo, demonstrating that increased MAPK signaling is the main cause of the muscle phenotype in CS.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1804-1804
Author(s):  
Giles Best ◽  
Kyle Crassini ◽  
Williams Stevenson ◽  
Stephen P. Mulligan

Abstract Abstract 1804 Background Despite the high response rates of patients with Chronic Lymphocytic Leukemia (CLL) to the fludarabine (F), cyclophosphamide (C), rituximab (R) regimen, relapsed or refractory disease is common. Novel therapeutic approaches are required that are effective in this setting. Targeting specific signaling molecules is proving an effective strategy for treating patients who are refractory to FCR. Given that the mitogen-activated protein kinase pathway (MAPK) pathway is constitutively active in CLL cells and that inhibitors of mitogen-activated protein kinase kinase (MEK1) in this pathway are in clinical trials for solid tumors, we sought to investigate the potential of MEK1 as a therapeutic target in CLL. Results Inhibition of MEK1/2 using MEK inhibitor I (MEKi; Calbiochem/Merck) induced apoptosis in the MEC1 cell line and in 18 patient samples. Importantly, sensitivity of the patient samples occurred irrespective of ATM/TP53 functional status, of poor prognostic features or of treatment history. MEKi was also effective against 4 CLL patient samples cultured in an in vitro model of the tumor microenvironment, albeit with a significantly higher IC50 than observed against CLL cells cultured in media alone. As fludarabine-based therapies have become the mainstay of CLL treatment, we investigated the effect of combining the MEK inhibitor with this purine analogue. Synergy between MEKi and fludarabine was apparent against the MEC-1 cell line and 10 patient samples. Dose reduction indices (DRI) calculated from the drug combination indicate this synergy was predominantly due to an increase in fludarabine sensitivity. Investigation of the mechanisms of the synergy between MEKi and fludarabine suggests decreased levels of reactive oxygen species (ROS) and expression of the pro-survival protein, MCL-1, may be contributing factors (see figure). Summary These data suggest for the first time that inhibition of MEK1/2 may represent a potential therapeutic option for CLL patients. The efficacy of the MEK inhibitor against CLL cells cultured in the supportive in vitro environment suggest that this approach may also be effective at targeting the proliferative fraction of CLL cells in the tumor microenvironment. As clinical trials of MEK1/2 inhibitors are currently underway in solid tissue malignancies, our data suggest that trials of these agents may also be warranted for high risk CLL. Disclosures: No relevant conflicts of interest to declare.


Author(s):  
Eva M. Goetz ◽  
Levi A. Garraway

Overview: Anticancer drug resistance remains a crucial impediment to the care of many patients with cancer. Although the exact mechanisms of resistance may differ for each therapy, common mechanisms of resistance predominate, including drug inactivation or modification, mutation of the target protein, reduced drug accumulation, or bypass of target inhibition. With the discovery and use of targeted therapies (such as small-molecule kinase inhibitors), resistance has received renewed attention—especially in light of the dramatic responses that may emerge from such therapeutics in particular genetic or molecular contexts. Recently, the mitogen-activated protein kinase (MAPK) pathway has become exemplary in this regard, since it is activated in many different cancers. Drugs targeting RAF and MAPK kinase (MEK) are currently in clinical trials for the treatment of several types of cancer. Vemurafenib, a selective RAF kinase inhibitor recently approved for the treatment of BRAF(V600E) melanoma, shows strong efficacy initially; however, the development of resistance is nearly ubiquitous. In vitro testing and analysis of patient samples have uncovered several mechanisms of resistance to RAF inhibition. Surprisingly, mutations in the drug-binding pocket have not thus far been observed; however, other alterations at the level of RAF, as well as downstream activation of MEK and bypass of MEK/extracellular signal-regulated kinase (ERK) signaling altogether, confer resistance to vemurafenib. Looking forward, combined RAF and MEK inhibitor treatments may improve efficacy—yet we must anticipate mechanisms of resistance to this combination as well. Therefore, understanding and/or determining the mechanism of resistance are paramount to effective cancer treatment.


2016 ◽  
Vol 45 (2) ◽  
pp. 353-361 ◽  
Author(s):  
Dolores Diaz ◽  
Rama Pai ◽  
Gary Cain ◽  
Nghi La ◽  
Donna Dambach ◽  
...  

Inhibition of the mitogen-activated protein kinase/extracellular signal-regulated (MAPK/ERK) pathway is an attractive therapeutic approach for human cancer therapy. In the course of evaluating structurally distinct small molecule inhibitors that target mitogen-activated protein kinase kinase (MEK) and ERK kinases in this pathway, we observed an unusual, dose-related increase in the incidence of green serum in preclinical safety studies in rats. Having ruled out changes in bilirubin metabolism, we demonstrated a 2- to 3-fold increase in serum ceruloplasmin levels, likely accounting for the observed green color. This was not associated with an increase in α-2-macroglobulin, the major acute phase protein in rats, indicating that ceruloplasmin levels increased independently of an inflammatory response. Elevated serum ceruloplasmin was also not correlated with changes in total hepatic copper, adverse clinical signs, or pathology findings indicative of copper toxicity, therefore discounting copper overload as the etiology. Both ERK and MEK inhibitors led to increased ceruloplasmin secretion in rat primary hepatocyte cultures in vitro, and this increase was associated with activation of the Forkhead box, class O1 (FOXO1) transcription factor. In conclusion, increased serum ceruloplasmin induced by MEK and ERK inhibition is due to increased synthesis by hepatocytes from FOXO1 activation and results in the nonadverse development of green serum in rats.


Blood ◽  
2004 ◽  
Vol 103 (10) ◽  
pp. 3736-3743 ◽  
Author(s):  
Brian J. Lannutti ◽  
Jonathan G. Drachman

Abstract In this study we demonstrate that thrombopoietin (TPO)–stimulated Src family kinases (SFKs) inhibit cellular proliferation and megakaryocyte differentiation. Using the Src kinase inhibitors pyrolopyrimidine 1 and 2 (PP1, PP2), we show that TPO-dependent proliferation of BaF3/Mpl cells was enhanced at concentrations that are specific for SFKs. Similarly, proliferation is increased after introducing a dominant-negative form of Lyn into BaF3/Mpl cells. Murine marrow cells from Lyn-deficient mice or wild-type mice cultured in the presence of the Src inhibitor, PP1, yielded a greater number of mature megakaryocytes and increased nuclear ploidy. Truncation and targeted mutation of the Mpl cytoplasmic domain indicate that Y112 is critical for Lyn activation. Examining the molecular mechanism for this antiproliferative effect, we determined that SFK inhibitors did not affect tyrosine phosphorylation of Janus kinase 2 (JAK2), Shc, signal transducer and activator of transcription (STAT)5, or STAT3. In contrast, pretreatment of cells with PP2 increased Erk1/2 (mitogen-activated protein kinase [MAPK]) phosphorylation and in vitro kinase activity, particularly after prolonged TPO stimulation. Taken together, our results show that Mpl stimulation results in the activation of Lyn kinase, which appears to limit the proliferative response through a signaling cascade that regulates MAPK activity. These data suggest that SFKs modify the rate of TPO-induced proliferation and are likely to affect cell cycle regulation during megakaryocytopoiesis.


1999 ◽  
Vol 19 (9) ◽  
pp. 6003-6011 ◽  
Author(s):  
Hélène Talarmin ◽  
Claude Rescan ◽  
Sandrine Cariou ◽  
Denise Glaise ◽  
Giuliana Zanninelli ◽  
...  

ABSTRACT In this study, activation of the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) signalling pathway was analyzed in proliferating rat hepatocytes both in vivo after partial hepatectomy and in vitro following epidermal growth factor (EGF)-pyruvate stimulation. First, a biphasic MEK/ERK activation was evidenced in G1 phase of hepatocytes from regenerating liver but not from sham-operated control animals. One occurred in early G1 (30 min to 4 h), and the other occurred in mid-late G1, peaking at around 10.5 h. Interestingly, the mid-late G1 activation peak was located just before cyclin D1 induction in both in vivo and in vitro models. Second, the biological role of the MEK/ERK cascade activation in hepatocyte progression through the G1/S transition was assessed by adding a MEK inhibitor (PD 98059) to EGF-pyruvate-stimulated hepatocytes in primary culture. In the presence of MEK inhibitor, cyclin D1 mRNA accumulation was inhibited, DNA replication was totally abolished, and the MEK1 isoform was preferentially targeted by this inhibition. This effect was dose dependent and completely reversed by removing the MEK inhibitor. Furthermore, transient transfection of hepatocytes with activated MEK1 construct resulted in increased cyclin D1 mRNA accumulation. Third, a correlation between the mid-late G1 MEK/ERK activation in hepatocytes in vivo after partial hepatectomy and the mitogen-independent proliferation capacity of these cells in vitro was established. Among hepatocytes isolated either 5, 7, 9, 12 or 15 h after partial hepatectomy, only those isolated from 12- and 15-h regenerating livers were able to replicate DNA without additional growth stimulation in vitro. In addition, PD 98059 intravenous administration in vivo, before MEK activation, was able to inhibit DNA replication in hepatocytes from regenerating livers. Taken together, these results show that (i) early induction of the MEK/ERK cascade is restricted to hepatocytes from hepatectomized animals, allowing an early distinction of primed hepatocytes from those returning to quiescence, and (ii) mid-late G1 MEK/ERK activation is mainly associated with cyclin D1 accumulation which leads to mitogen-independent progression of hepatocytes to S phase. These results allow us to point to a growth factor dependency in mid-late G1 phase of proliferating hepatocytes in vivo as observed in vitro in proliferating hepatocytes and argue for a crucial role of the MEK/ERK cascade signalling pathway.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Michael J. Wagner ◽  
Yasmin A. Lyons ◽  
Jean H. Siedel ◽  
Robert Dood ◽  
Archana S. Nagaraja ◽  
...  

AbstractAngiosarcoma is an aggressive malignancy of endothelial cells that carries a high mortality rate. Cytotoxic chemotherapy can elicit clinical responses, but the duration of response is limited. Sequencing reveals multiple mutations in angiogenesis pathways in angiosarcomas, particularly in vascular endothelial growth factor (VEGFR) and mitogen-activated protein kinase (MAPK) signaling. We aimed to determine the biological relevance of these pathways in angiosarcoma. Tissue microarray consisting of clinical formalin-fixed paraffin embedded tissue archival samples were stained for phospho- extracellular signal-regulated kinase (p-ERK) with immunohistochemistry. Angiosarcoma cell lines were treated with the mitogen-activated protein kinase kinase (MEK) inhibitor trametinib, pan-VEGFR inhibitor cediranib, or combined trametinib and cediranib and viability was assessed. Reverse phase protein array (RPPA) was performed to assess multiple oncogenic protein pathways. SVR angiosarcoma cells were grown in vivo and gene expression effects of treatment were assessed with whole exome RNA sequencing. MAPK signaling was found active in over half of clinical angiosarcoma samples. Inhibition of MAPK signaling with the MEK inhibitor trametinib decreased the viability of angiosarcoma cells. Combined inhibition of the VEGF and MAPK pathways with cediranib and trametinib had an additive effect in in vitro models, and a combinatorial effect in an in vivo model. Combined treatment led to smaller tumors than treatment with either agent alone. RNA-seq demonstrated distinct expression signatures between the trametinib treated tumors and those treated with both trametinib and cediranib. These results indicate a clinical study of combined VEGFR and MEK inhibition in angiosarcoma is warranted.


Sign in / Sign up

Export Citation Format

Share Document