scholarly journals Exploring the GLP-1–GLP-1R axis in porcine pancreas and gastrointestinal tract in vivo by ex vivo autoradiography

2021 ◽  
Vol 9 (1) ◽  
pp. e002083
Author(s):  
Elin Manell ◽  
Emmi Puuvuori ◽  
Anna Svensson ◽  
Irina Velikyan ◽  
Gry Hulsart-Billström ◽  
...  

IntroductionGlucagon-like peptide-1 (GLP-1) increases insulin secretion from pancreatic beta-cells and GLP-1 receptor (GLP-1R) agonists are widely used as treatment for type 2 diabetes mellitus. Studying occupancy of the GLP-1R in various tissues is challenging due to lack of quantitative, repeatable assessments of GLP-1R density. The present study aimed to describe the quantitative distribution of GLP-1Rs and occupancy by endogenous GLP-1 during oral glucose tolerance test (OGTT) in pigs, a species that is used in biomedical research to model humans.Research design and methodsGLP-1R distribution and occupancy were measured in pancreas and gastrointestinal tract by ex vivo autoradiography using the GLP-1R-specific radioligand 177Lu-exendin-4 in two groups of pigs, control or bottle-fed an oral glucose load. Positron emission tomography (PET) data from pigs injected with 68Ga-exendin-4 in a previous study were used to retrieve data on biodistribution of GLP-1R in the gastrointestinal tract.ResultsHigh homogenous uptake of 177Lu-exendin-4 was found in pancreas, and even higher uptake in areas of duodenum. Low uptake of 177Lu-exendin-4 was found in stomach, jejunum, ileum and colon. During OGTT, there was no increase in plasma GLP-1 concentrations and occupancy of GLP-1Rs was low. The ex vivo autoradiography results were highly consistent with to the biodistribution of 68Ga-exendin-4 in pigs scanned by PET.ConclusionWe identified areas with similarities as well as important differences regarding GLP-1R distribution and occupancy in pigs compared with humans. First, there was strong ligand binding in the exocrine pancreas in islets. Second, GLP-1 secretion during OGTT is minimal and GLP-1 might not be an important incretin in pigs under physiological conditions. These findings offer new insights on the relevance of porcine diabetes models.

2009 ◽  
Vol 296 (3) ◽  
pp. E473-E479 ◽  
Author(s):  
Yukihiro Fujita ◽  
Rhonda D. Wideman ◽  
Madeleine Speck ◽  
Ali Asadi ◽  
David S. King ◽  
...  

Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are released during meals from endocrine cells located in the gut mucosa and stimulate insulin secretion from pancreatic β-cells in a glucose-dependent manner. Although the gut epithelium senses luminal sugars, the mechanism of sugar sensing and its downstream events coupled to the release of the incretin hormones are not clearly elucidated. Recently, it was reported that sucralose, a sweetener that activates the sweet receptors of taste buds, triggers incretin release from a murine enteroendocrine cell line in vitro. We confirmed that immunoreactivity of α-gustducin, a key G-coupled protein involved in taste sensing, is sometimes colocalized with GIP in rat duodenum. We investigated whether secretion of incretins in response to carbohydrates is mediated via taste receptors by feeding rats the sweet-tasting compounds saccharin, acesulfame potassium, d-tryptophan, sucralose, or stevia. Oral gavage of these sweeteners did not reduce the blood glucose excursion to a subsequent intraperitoneal glucose tolerance test. Neither oral sucralose nor oral stevia reduced blood glucose levels in Zucker diabetic fatty rats. Finally, whereas oral glucose increased plasma GIP levels ∼4-fold and GLP-1 levels ∼2.5-fold postadministration, none of the sweeteners tested significantly increased levels of these incretins. Collectively, our findings do not support the concept that release of incretins from enteroendocrine cells is triggered by carbohydrates via a pathway identical to the sensation of “sweet taste” in the tongue.


2002 ◽  
Vol 75 (6) ◽  
pp. 723-730 ◽  
Author(s):  
Wei-Fang Wang ◽  
Kiichi Ishiwata ◽  
Motohiro Kiyosawa ◽  
Kazunori Kawamura ◽  
Keiichi Oda ◽  
...  

Endocrinology ◽  
2013 ◽  
Vol 154 (11) ◽  
pp. 3978-3983 ◽  
Author(s):  
Christoffer Clemmensen ◽  
Sanela Smajilovic ◽  
Eric P. Smith ◽  
Stephen C. Woods ◽  
Hans Bräuner-Osborne ◽  
...  

Pharmacological and surgical interventions that increase glucagon-like peptide 1 (GLP-1) action are effective to improve glucose homeostasis in type 2 diabetes mellitus. In light of this, nutritional strategies to enhance postprandial GLP-1 secretion, particularly in the context of diet-induced obesity, may provide an alternative therapeutic approach. Importantly, recent evidence suggests the amino acid l-arginine, a well-known insulin secretagogue, can also stimulate release of GLP-1 from isolated rat intestine. Here we tested the hypothesis that oral l-arginine acts as a GLP-1 secretagogue in vivo, to augment postprandial insulin secretion and improve glucose tolerance. To test this, we administered l-arginine or vehicle by oral gavage, immediately prior to an oral glucose tolerance test in lean and diet-induced obese mice. In both lean and obese mice oral l-arginine increased plasma GLP-1 and insulin and substantially improved glucose clearance. To directly assess the contribution of GLP-1 receptor (GLP-1R)-signaling to these improvements, l-arginine was given to Glp1r knockout mice and their wild-type littermates. In this experiment oral l-arginine significantly augmented insulin secretion and improved glucose clearance in WT mice, but not in Glp1r knockout littermates. Taken together these findings identify l-arginine as a GLP-1 secretagogue in vivo and demonstrate that improvement of glucose tolerance by oral l-arginine depends on GLP-1R-signaling. These findings raise the intriguing possibility that l-arginine-based nutritional and/or pharmaceutical therapies may benefit glucose tolerance by improving the postprandial GLP-1 response in obese individuals.


Author(s):  
Naresh Damuka ◽  
Miranda Orr ◽  
Paul W. Czoty ◽  
Jeffrey L. Weiner ◽  
Thomas J. Martin ◽  
...  

AbstractMicrotubules (MTs) are structural units in the cytoskeleton. In brain cells they are responsible for axonal transport, information processing, and signaling mechanisms. Proper function of these processes is critical for healthy brain functions. Alcohol and substance use disorders (AUD/SUDs) affects the function and organization of MTs in the brain, making them a potential neuroimaging marker to study the resulting impairment of overall neurobehavioral and cognitive processes. Our lab reported the first brain-penetrant MT-tracking Positron Emission Tomography (PET) ligand [11C]MPC-6827 and demonstrated its in vivo utility in rodents and non-human primates. To further explore the in vivo imaging potential of [11C]MPC-6827, we need to investigate its mechanism of action. Here, we report preliminary in vitro binding results in SH-SY5Y neuroblastoma cells exposed to ethanol (EtOH) or cocaine in combination with multiple agents that alter MT stability. EtOH and cocaine treatments increased MT stability and decreased free tubulin monomers. Our initial cell-binding assay demonstrated that [11C]MPC-6827 may have high affinity to free/unbound tubulin units. Consistent with this mechanism of action, we observed lower [11C]MPC-6827 uptake in SH-SY5Y cells after EtOH and cocaine treatments (e.g., fewer free tubulin units). We are currently performing in vivo PET imaging and ex vivo biodistribution studies in rodent and nonhuman primate models of AUD and SUDs and Alzheimer's disease.


2009 ◽  
Vol 160 (5) ◽  
pp. 785-790 ◽  
Author(s):  
Eirini Maratou ◽  
Dimitrios J Hadjidakis ◽  
Anastasios Kollias ◽  
Katerina Tsegka ◽  
Melpomeni Peppa ◽  
...  

ObjectiveAlthough clinical hypothyroidism (HO) is associated with insulin resistance, there is no information on insulin action in subclinical hypothyroidism (SHO).Design and methodsTo investigate this, we assessed the sensitivity of glucose metabolism to insulin both in vivo (by an oral glucose tolerance test) and in vitro (by measuring insulin-stimulated rates of glucose transport in isolated monocytes with flow cytometry) in 21 euthyroid subjects (EU), 12 patients with HO, and 13 patients with SHO.ResultsAll three groups had comparable plasma glucose levels, with the HO and SHO having higher plasma insulin than the EU (P<0.05). Homeostasis model assessment index was increased in HO (1.97±0.22) and SHO (1.99±0.13) versus EU (1.27±0.16, P<0.05), while Matsuda index was decreased in HO (3.89±0.36) and SHO (4.26±0.48) versus EU (7.76±0.87, P<0.001), suggesting insulin resistance in both fasting and post-glucose state. At 100 μU/ml insulin: i) GLUT4 levels on the monocyte plasma membrane were decreased in both HO (215±19 mean fluorescence intensity, MFI) and SHO (218±24 MFI) versus EU (270±25 MFI, P=0.03 and 0.04 respectively), and ii) glucose transport rates in monocytes from HO (481±30 MFI) and SHO (462±19 MFI) were decreased versus EU (571±15 MFI, P=0.04 and 0.004 respectively).ConclusionsIn patients with HO and SHO: i) insulin resistance was comparable; ii) insulin-stimulated rates of glucose transport in isolated monocytes were decreased due to impaired translocation of GLUT4 glucose transporters on the plasma membrane; iii) these findings could justify the increased risk for insulin resistance-associated disorders, such as cardiovascular disease, observed in patients with HO or SHO.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0249239
Author(s):  
Jason A. West ◽  
Anastasia Tsakmaki ◽  
Soumitra S. Ghosh ◽  
David G. Parkes ◽  
Rikke V. Grønlund ◽  
...  

Combinatorial gut hormone therapy is one of the more promising strategies for identifying improved treatments for metabolic disease. Many approaches combine the established benefits of glucagon-like peptide-1 (GLP-1) agonism with one or more additional molecules with the aim of improving metabolic outcomes. Recent attention has been drawn to the glucose-dependent insulinotropic polypeptide (GIP) system due to compelling pre-clinical evidence describing the metabolic benefits of antagonising the GIP receptor (GIPR). We rationalised that benefit might be accrued from combining GIPR antagonism with GLP-1 agonism. Two GIPR peptide antagonists, GIPA-1 (mouse GIP(3–30)NH2) and GIPA-2 (NαAc-K10[γEγE-C16]-Arg18-hGIP(5–42)), were pharmacologically characterised and both exhibited potent antagonist properties. Acute in vivo administration of GIPA-1 during an oral glucose tolerance test (OGTT) had negligible effects on glucose tolerance and insulin in lean mice. In contrast, GIPA-2 impaired glucose tolerance and attenuated circulating insulin levels. A mouse model of diet-induced obesity (DIO) was used to investigate the potential metabolic benefits of chronic dosing of each antagonist, alone or in combination with liraglutide. Chronic administration studies showed expected effects of liraglutide, lowering food intake, body weight, fasting blood glucose and plasma insulin concentrations while improving glucose sensitivity, whereas delivery of either GIPR antagonist alone had negligible effects on these parameters. Interestingly, chronic dual therapy augmented insulin sensitizing effects and lowered plasma triglycerides and free-fatty acids, with more notable effects observed with GIPA-1 compared to GIPA-2. Thus, the co-administration of both a GIPR antagonist with a GLP1 agonist uncovers interesting beneficial effects on measures of insulin sensitivity, circulating lipids and certain adipose stores that seem influenced by the degree or nature of GIP receptor antagonism.


Author(s):  
Esben Stistrup Lauritzen ◽  
Julie Støy ◽  
Cecilie Bæch-Laursen ◽  
Niels Grarup ◽  
Niels Jessen ◽  
...  

Abstract Context Glucose homeostasis is under circadian control through both endocrine and intracellular mechanisms with several lines of evidence suggesting that melatonin affects glucose homeostasis. Objective To evaluate the acute in-vivo and in-situ effects of melatonin on secretion of the incretin hormones, GLP-1 and GIP, and their impact on β-cell insulin secretion. Design A human randomized, double-blinded, placebo-controlled crossover study combined with a confirmatory in-situ study of perfused rat intestines. Setting Aarhus University Hospital. Methods: Fifteen healthy male participants were examined 2 x 2 times: An oral glucose tolerance test (OGTT) was performed on day one and an isoglycemic intravenous glucose infusion replicating the blood glucose profile of the OGTT day was performed on day two. These pairs of study days were repeated on treatment with melatonin and placebo, respectively. For the in-situ study, six rat intestines and four rat pancreases were perfused arterially with perfusion buffer ± melatonin. The intestines were concomitantly perfused with glucose through the luminal compartment. Results In humans, melatonin treatment resulted in reduced GIP secretion compared with placebo (ANOVA p=0.003), an effect also observed in the perfused rat intestines (ANOVA p=0.003) in which GLP-1 secretion also was impaired by arterial melatonin infusion (ANOVA p&lt;0.001). Despite a decrease in GIP levels, the in-vivo glucose-stimulated insulin secretion was unaffected by melatonin (p=0.78). Conclusion Melatonin reduced GIP secretion during an oral glucose challenge in healthy young men but did not affect insulin secretion. Reduced GIP secretion was confirmed in an in-situ model of the rat intestine.


2020 ◽  
Vol 13 (7) ◽  
pp. dmm045385
Author(s):  
Oren Gordon ◽  
Robert J. Miller ◽  
John M. Thompson ◽  
Alvaro A. Ordonez ◽  
Mariah H. Klunk ◽  
...  

ABSTRACTPost-surgical implant-associated spinal infection is a devastating complication commonly caused by Staphylococcus aureus. Biofilm formation is thought to reduce penetration of antibiotics and immune cells, contributing to chronic and difficult-to-treat infections. A rabbit model of a posterior-approach spinal surgery was created, in which bilateral titanium pedicle screws were interconnected by a plate at the level of lumbar vertebra L6 and inoculated with a methicillin-resistant S.aureus (MRSA) bioluminescent strain. In vivo whole-animal bioluminescence imaging (BLI) and ex vivo bacterial cultures demonstrated a peak in bacterial burden by day 14, when wound dehiscence occurred. Structures suggestive of biofilm, visualized by scanning electron microscopy, were evident up to 56 days following infection. Infection-induced inflammation and bone remodeling were also monitored using 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) and computed tomography (CT). PET imaging signals were noted in the soft tissue and bone surrounding the implanted materials. CT imaging demonstrated marked bone remodeling and a decrease in dense bone at the infection sites. This rabbit model of implant-associated spinal infection provides a valuable preclinical in vivo approach to investigate the pathogenesis of implant-associated spinal infections and to evaluate novel therapeutics.


Sign in / Sign up

Export Citation Format

Share Document