scholarly journals 368 Early-life skin microbiome and susceptibility for different eczema subphenotypes by atopic status

Author(s):  
Yehao Chen ◽  
Jennifer Wing-Ki Yau ◽  
Wing Hung Tam ◽  
Zigui Chen ◽  
Paul Kay-Sheung Chan ◽  
...  
2019 ◽  
Author(s):  
Tamsyn M. Uren Webster ◽  
Deiene Rodriguez-Barreto ◽  
Giovanni Castaldo ◽  
John Taylor ◽  
Peter Gough ◽  
...  

AbstractMicrobial communities associated with the gut and the skin are strongly influenced by environmental factors, and can rapidly adapt to change. Historical processes may also affect the microbiome. In particular, variation in microbial colonisation in early life has the potential to induce lasting effects on microbial assemblages. However, little is known about the relative extent of microbiome plasticity or the importance of historical colonisation effects following environmental change, especially for non-mammalian species. To investigate this we performed a reciprocal translocation of Atlantic salmon between captive and semi-natural conditions. Wild and hatchery-reared fry were transferred to three common garden experimental environments for six weeks: standard hatchery conditions, hatchery conditions with an enriched diet, and simulated wild conditions. We characterised the faecal and skin microbiome of individual fish before and after the environmental translocation, using a BACI (before-after-control-impact) design. We found evidence of extensive plasticity in both gut and skin microbiota, with the greatest changes in alpha and beta diversity associated with the largest changes in environment and diet. Microbiome richness and diversity were entirely determined by environment, with no detectable historical effects of fish origin. Microbiome structure was also strongly influenced by current environmental conditions but, for the first time in fish, we also found evidence of colonisation history, including a number of OTUs characteristic of captive rearing. These results may have important implications for host adaptation to local selective pressures, and also highlight how conditions during early life can have a long-term influence on the microbiome and, potentially, host health.


Author(s):  
Hitham Abduarhman Alghamdi ◽  
Ahmed Behieldin ◽  
Sherif Edris

Abstract Atopic dermatitis (AD) is the main focus of this review which mostly starts with children in early life. Beside the etiological factors like environmental, dietary or medical exposures, Gut-skin axis microbiome studies have an impact to investigate and to understand the relation between the gut microbiome and changes to the skin microbiom and some skin diseases resulting like AD. Infants start forming their microbiome in early life and some researches suggest that this time have a crucial role in development of AD. Balanced bacterial composition is important to maintain healthy skin as the gut microbiome dysbiosis may result in dramatic shifting in the skin microbiome that gives better chance for some bacteria such as Staphylococcus aureus to over prevail which has been reported to contribute in AD development. Among several factors, immunological activity has a strong relation to microbiome changed composition and development of AD. Continuous....  


2020 ◽  
Author(s):  
Tamsyn M. Uren Webster ◽  
Sofia Consuegra ◽  
Carlos Garcia de Leaniz

AbstractIntensively farmed fish are commonly stressed, often leading to immune impairment and increased susceptibility to disease. Microbial communities associated with the gut and skin are vital to host immune function, but little is known about how stress affects the fish microbiome, especially during the sensitive early life stages. We compared the effects of two aquaculture-relevant stressors on the gut and skin microbiome of Atlantic salmon fry: an acute cold stress during late embryogenesis, and a chronic environmental stress during the larval stage. Acute cold stress had a lasting effect on the structure of both the gut and the skin microbiome, likely due to disruption of the egg shell microbial communities which seed the initial colonisation of the teleost microbiome upon hatching. In contrast, chronic post hatch stress altered the structure of the gut microbiome, but not that of the skin. Both types of stressors promoted similar Gammaproteobacteria ASVs, particularly within the genera Acinetobacter and Aeromonas which include several important fish pathogens and, in the gut, reduced the abundance of Lactobacillales. This suggests that there may be common signatures of stress in the salmon microbiome, which may represent useful stress biomarkers in aquaculture.


PeerJ ◽  
2022 ◽  
Vol 10 ◽  
pp. e12712
Author(s):  
Roland A. Knapp ◽  
Maxwell B. Joseph ◽  
Thomas C. Smith ◽  
Ericka E. Hegeman ◽  
Vance T. Vredenburg ◽  
...  

The recently-emerged amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) has had an unprecedented impact on global amphibian populations, and highlights the urgent need to develop effective mitigation strategies. We conducted in-situ antifungal treatment experiments in wild populations of the endangered mountain yellow-legged frog during or immediately after Bd-caused mass die-off events. The objective of treatments was to reduce Bd infection intensity (“load”) and in doing so alter frog-Bd dynamics and increase the probability of frog population persistence despite ongoing Bd infection. Experiments included treatment of early life stages (tadpoles and subadults) with the antifungal drug itraconazole, treatment of adults with itraconazole, and augmentation of the skin microbiome of subadults with Janthinobacterium lividum, a commensal bacterium with antifungal properties. All itraconazole treatments caused immediate reductions in Bd load, and produced longer-term effects that differed between life stages. In experiments focused on early life stages, Bd load was reduced in the 2 months immediately following treatment and was associated with increased survival of subadults. However, Bd load and frog survival returned to pre-treatment levels in less than 1 year, and treatment had no effect on population persistence. In adults, treatment reduced Bd load and increased frog survival over the entire 3-year post-treatment period, consistent with frogs having developed an effective adaptive immune response against Bd. Despite this protracted period of reduced impacts of Bd on adults, recruitment into the adult population was limited and the population eventually declined to near-extirpation. In the microbiome augmentation experiment, exposure of subadults to a solution of J. lividum increased concentrations of this potentially protective bacterium on frogs. However, concentrations declined to baseline levels within 1 month and did not have a protective effect against Bd infection. Collectively, these results indicate that our mitigation efforts were ineffective in causing long-term changes in frog-Bd dynamics and increasing population persistence, due largely to the inability of early life stages to mount an effective immune response against Bd. This results in repeated recruitment failure and a low probability of population persistence in the face of ongoing Bd infection.


2021 ◽  
Author(s):  
Roland A Knapp ◽  
Maxwell B Joseph ◽  
Thomas C Smith ◽  
Ericka E Hegeman ◽  
Vance T Vredenburg ◽  
...  

The recently-emerged amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) has had an unprecedented impact on global amphibian populations, and highlights the urgent need to develop effective mitigation strategies against this pathogen. We conducted field antifungal treatment experiments in populations of the endangered mountain yellow-legged frog during or immediately after Bd-caused mass die-off events. The objective of the treatments was to reduce Bd infection intensity ("load") and in doing so alter frog-Bd dynamics and increase the probability of frog population persistence despite ongoing Bd infection. Experiments included treatment of early life stages (tadpoles and subadults) with the antifungal drug itraconazole, treatment of adults with itraconazole, and augmentation of the skin microbiome of subadults with Janthinobacterium lividum, a commensal bacterium with antifungal properties. All itraconazole treatments caused immediate reductions in Bd load, and produced longer-term effects that differed between life stages. In experiments focused on early life stages, Bd load was reduced in the two months immediately following treatment and was associated with increased survival of subadults. However, Bd load and frog survival returned to pre-treatment levels in less than one year, and treatment had no effect on population persistence. In adults, treatment reduced Bd load and increased frog survival over the three-year post-treatment period, consistent with frogs having developed an effective adaptive immune response against Bd. Despite this protracted period of reduced impacts of Bd on adults, recruitment of new individuals into the adult population was limited and the population eventually declined to near-extirpation. In the microbiome augmentation experiment, bathing frogs in a J. lividum solution after Bd load reduction with itraconazole increased concentrations of this bacterium on frogs, but concentrations declined to baseline levels within one month and did not have a protective effect against Bd infection. Collectively, these results suggest that Bd mitigation efforts focused on frog populations that have recently declined due to Bd emergence are ineffective in causing long-term changes in frog-Bd dynamics and increasing population persistence, due largely to the inability of early life stages to mount an effective immune response against Bd and resulting high susceptibility. This results in repeated recruitment failure and a low probability of population persistence in the face of ongoing Bd infection.


2016 ◽  
Vol 86 (1-2) ◽  
pp. 36-47 ◽  
Author(s):  
Imen Dridi ◽  
Nidhal Soualeh ◽  
Torsten Bohn ◽  
Rachid Soulimani ◽  
Jaouad Bouayed

Abstract.This study examined whether perinatal exposure to polluted eels (Anguilla anguilla L.) induces changes in the locomotor activity of offspring mice across lifespan (post-natal days (PNDs) 47 – 329), using the open field and the home cage activity tests. Dams were exposed during gestation and lactation, through diets enriched in eels naturally contaminated with pollutants including PCBs. Analysis of the eel muscle focused on the six non-dioxin-like (NDL) indicator PCBs (Σ6 NDL-PCBs: 28, 52, 101, 138, 153 and 180). Four groups of dams (n = 10 per group) received either a standard diet without eels or eels (0.8 mg/kg/day) containing 85, 216, or 400 ng/kg/day of ϵ6 NDL-PCBs. The open field test showed that early-life exposure to polluted eels increased locomotion in female offspring of exposed dams but not in males, compared to controls. This hyperlocomotion appeared later in life, at PNDs 195 and 329 (up to 32 % increase, p < 0.05). In addition, overactivity was observed in the home cage test at PND 305: exposed offspring females showed a faster overall locomotion speed (3.6 – 4.2 cm/s) than controls (2.9 cm/s, p <0.05); again, males remained unaffected. Covered distances in the home cage test were only elevated significantly in offspring females exposed to highest PCB concentrations (3411 ± 590 cm vs. 1377 ± 114 cm, p < 0.001). These results suggest that early-life exposure to polluted eels containing dietary contaminants including PCBs caused late, persistent and gender-dependent neurobehavioral hyperactive effects in offspring mice. Furthermore, female hyperactivity was associated with a significant inhibition of acetylcholinesterase activity in the hippocampus and the prefrontal cortex.


2020 ◽  
Vol 134 (3) ◽  
pp. 222-232
Author(s):  
Khulganaa Buyannemekh ◽  
Jessica B. Zito ◽  
Michelle L. Tomaszycki

2019 ◽  
Vol 133 (1) ◽  
pp. 50-58 ◽  
Author(s):  
Nathalie D. Elliott ◽  
Rick Richardson

Sign in / Sign up

Export Citation Format

Share Document