▾ Cisapride – more selective than metoclopramide

1990 ◽  
Vol 28 (23) ◽  
pp. 89-90

Metoclopramide (Maxolon; Primperan), has been around for over 20 years and domperidone (Motilium - Sterling Winthrop) for eight years. Both are prokinetic drugs which speed gastric emptying, increase oesophageal sphincter pressure, stimulate gut motility and in addition have a central antiemetic effect. Cisapride (Prepulsid - Janssen; Alimix - Cilag) has a similar chemical structure to metoclopramide and is intended for the reduction of oesophageal reflux and relief of symptoms caused by impaired gastrointestinal motility. The product licence has recently been extended to include treatment of non-ulcer dyspepsia.

2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Eduardo Navarro ◽  
S. J. Alonso ◽  
R. Navarro

Elenine is the aglycone of elenoside, a cytotoxic arylnaphthalene lignan (NSC 644013-W/1) derived fromJusticia hyssopifolia. (Family: Acanthaceae). Elenoside is a β-D-glucoside, with a similar chemical structure to etoposide, exhibiting central depressant activity. In the present study, elenine was given to mice and rats at doses of 10, 20, and 40 mg/kg. Acute toxicity (24 h) and general behaviour in mice was studied as well as its effects on muscular relaxant activity, locomotor activity (Varimex test), and the open-field test and were compared with 10 mg/kg of chlorpromazine. Elenine produced a reduction in the permanence time in muscular relaxant activity (traction test). Spontaneous activity was lower in the Varimex test. The ambulation and rearing were lower compared with the control group, and an increase in boluses was observed in the open-field test. Thus, it can be concluded that elenine has central sedative effects at lower doses than those used with elenoside and has a possible application in conditions of anxiety.


1995 ◽  
Vol 269 (2) ◽  
pp. R445-R452 ◽  
Author(s):  
V. Martinez ◽  
M. Jimenez ◽  
E. Gonalons ◽  
P. Vergara

Infusion of lipids into the ileum delays gastric emptying and intestinal transit time in some species. The aim of this study was to characterize the actions of intraluminal lipid infusion on gastrointestinal electrical activity in chickens. Animals were prepared for electromyography with chronic electrodes in stomach, duodenum, and small intestine. Two catheters were chronically placed in the esophagus and ileum to infuse equimolar doses of either oleic acid (OA) or triolein (TO). Both OA and TO, esophageally infused, inhibited the frequency of the gastroduodenal cycle and increased the frequency of antiperistaltic spike bursts in the duodenum. Ileal infusion of OA, but not of TO, produced the same effects. Both esophageal and ileal OA infusion increased the duration of the migrating myoelectric complex (MMC) and decreased the speed of propagation of phase III. In conclusion, intraluminal infusion of lipids modulates gastrointestinal motility by decreasing the frequency of the gastric cycle, increasing duodenogastric refluxes, and elongating the MMC. These actions could delay gastric emptying and increase transit time, which suggests the presence of an "ileal brake" mechanism similar to that described in mammals.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Xin Zhang ◽  
Bin Cheng ◽  
Xianghong Jing ◽  
Yongfa Qiao ◽  
Xinyan Gao ◽  
...  

A large number of studies have been conducted to explore the efficacy of electroacupuncture (EA) for the treatment of gastrointestinal motility. While several lines of evidence addressed the basic mechanism of EA on gastrointestinal motility regarding effects of limb and abdomen points, the mechanism for effects of the back points on gastric motility still remains unclear. Here we report that the NMDA receptor (NMDAR) antagonist kynurenic acid inhibited the gastric emptying increase induced by high-intensity EA at BL21 and agonist NMDA enhanced the effect of the same treatment. EA at BL21 enhanced NMDAR, but not AMPA receptor (AMPAR) component of miniature excitatory postsynaptic current (mEPSC) in gastric-projecting neurons of the dorsal motor nucleus of the vagus (DMV). In sum, our data demonstrate an important role of NMDAR-mediated synaptic transmission of gastric-projecting DMV neurons in mediating EA at BL21-induced enhancement of gastric emptying.


2009 ◽  
Vol 7 (3) ◽  
pp. 218-222 ◽  
Author(s):  
Naruo Kawasaki ◽  
Koji Nakada ◽  
Yutaka Suzuki ◽  
Yoshiyuki Furukawa ◽  
Nobuyoshi Hanyu ◽  
...  

2019 ◽  
Vol 98 (1) ◽  
pp. 105-117 ◽  
Author(s):  
Irina B. Sedova ◽  
M. G. Kiseleva ◽  
L. P. Zakharova ◽  
V. A. Tutelyan

The present issue reviews literature and own research data and gives toxicological and hygienic characteristic of sterigmatocystin. This mycotoxin is produced by fungi of Aspergillus, Bipolaris, Chaetomium, Emiricella species, and is found in cereals, food products (bread, cheese, spices, coffee, dietary supplements) and feed. Sterigmatocystin being a biogenic precursor of aflatoxin B1, has similar chemical structure and exhibits the same toxicological properties, but its toxicity is ten times lower. However, these toxins are rarely detected together. A. versicolor and A. nidulans do not have enzymes necessary for the conversion of sterigmatocystin into aflatoxins, on the contrary, A. flavus and А. parasiticus transform almost all STC into aflatoxins. Sterigmatocystin has been recognized by International Agency for Research on Cancer (IARC) as a 2B carcinogen (possibly carcinogenic to humans). The primary target organ for both mycotoxins is liver. Sterigmatocystin shows mutagenic, toxic and teratogenic effects in animals. Up to date national and international data on sterigmatocystin occurrence in different products is summarized, analytical methods of the determination are reviewed, hygienic assessment of the STC as a priority pollutant is given in the present paper. Also information on STC exposure assessment with regard to different kinds of foodstuff in different countries is being reported, available data on maximum levels of STC in food and feed is discussed. However, data on toxin’s occurrence in food is insufficient for elaboration of hygienic regulations on allowable mycotoxin’s concentration in priority products. Databases Web of Science, PubMed, E-library, CyberLeninka were used when searching the literature.


2010 ◽  
Vol 298 (4) ◽  
pp. R1125-R1135 ◽  
Author(s):  
Yoshitaka Toyomasu ◽  
Erito Mochiki ◽  
Mitsuhiro Yanai ◽  
Kyoichi Ogata ◽  
Yuichi Tabe ◽  
...  

Monosodium l-glutamate (MSG) is a substance known to produce the umami taste. Recent studies indicate that MSG also stimulates a variety of activities in the gastrointestinal tract through its receptor in the gut, but no study has reported the activity in conscious large experimental animals. The aim of our study was to investigate whether direct intragastric MSG stimulates gut motility and to identify the mechanism in conscious dogs. Contractile response to intraluminal injection of MSG was studied in the fed and fasted states by means of chronically implanted force transducers. MSG (5, 15, 45, and 90 mM/kg) dissolved in water was injected into the stomach and duodenum in normal and vagotomized dogs. MSG solution was administered into the stomach before feeding, and gastric emptying was evaluated. Several inhibitors of gastrointestinal motility (atropine, hexamethonium, and granisetron) were injected intravenously before MSG administration to the stomach. The effect of MSG was investigated in Pavlov (vagally innervated corpus pouch), Heidenhain (vagally denervated corpus pouch), and antral pouch (vagally innervated) dogs. Upper gut motility was significantly increased by intragastric MSG but not significantly stimulated by intraduodenal MSG. Intragastric MSG (45 mM/kg) stimulated postprandial motility and accelerated gastric emptying. MSG-induced contractions were inhibited by truncal vagotomy, atropine, hexamethonium, and granisetron. Gut motility was increased by intrapouch injection of MSG in the Pavlov pouch, but it was not affected in the Heidenhain or antral pouch dogs. We conclude that intragastric MSG stimulates upper gut motility and accelerates gastric emptying. The sensory structure of MSG is present in the gastric corpus, and the signal is mediated by the vagus nerve.


PEDIATRICS ◽  
1970 ◽  
Vol 45 (1) ◽  
pp. 154-155
Author(s):  
H. Ekert

I am forced to comment on the far-reaching deductions drawn from the article by Dr. E. Richard Steihm and Dallas V. Clatanoff.1 Collection of blood from the cut surface of the umbilical cord invariably involves contamination of the blood with mucopolysaccharides of Wharton's jelly. These substances have a similar chemical structure to heparin and, like heparin, they exert a strong anti-thrombin effect. This can readily be confirmed by comparing the thrombin times of cord blood and blood obtained by venipuncture.


Sign in / Sign up

Export Citation Format

Share Document