Smad4/DPC4

2018 ◽  
Vol 71 (8) ◽  
pp. 661-664 ◽  
Author(s):  
Aoife J McCarthy ◽  
Runjan Chetty

Smad4 or DPC4 belongs to a family of signal transduction proteins that are phosphorylated and activated by transmembrane serine-threonine receptor kinases in response to transforming growth factor beta (TGF-β) signaling via several pathways. The gene acts as a tumour suppressor gene and inactivation of smad4/DPC4 is best recognised in pancreatic cancer. However, smad4/DPC4 is also mutated in other conditions and cancers such as juvenile polyposis syndrome with and without hereditary haemorrhagic telangiectasia, colorectal and prostate cancers.Immunohistochemistry for smad4/DPC4 protein is most useful in separating benign/reactive conditions from pancreatic cancer in needle/core biopsies. In normal and reactive states, the protein is localised to the cytoplasm and nucleus, while the protein is lost in high-grade pancreatic intraepithelial neoplasia/carcinoma in situ and pancreatic cancer.

2004 ◽  
Vol 11 (1) ◽  
pp. 35-49 ◽  
Author(s):  
D M Robertson ◽  
H G Burger ◽  
P J Fuller

Inhibin and activin are members of the transforming growth factor beta (TGFbeta) family of cytokines produced by the gonads, with a recognised role in regulating pituitary FSH secretion. Inhibin consists of two homologous subunits, alpha and either betaA or betaB (inhibin A and B). Activins are hetero- or homodimers of the beta-subunits. Inhibin and free alpha subunit are known products of two ovarian tumours (granulosa cell tumours and mucinous carcinomas). This observation has provided the basis for the development of a serum diagnostic test to monitor the occurrence and treatment of these cancers. Transgenic mice with an inhibin alpha subunit gene deletion develop stromal/granulosa cell tumours suggesting that the alpha subunit is a tumour suppressor gene. The role of inhibin and activin is reviewed in ovarian cancer both as a measure of proven clinical utility in diagnosis and management and also as a factor in the pathogenesis of these tumours. In order to place these findings into perspective the biology of inhibin/activin and of other members of the TGFbeta superfamily is also discussed.


1994 ◽  
Vol 42 (6) ◽  
pp. 733-744 ◽  
Author(s):  
R A Dodds ◽  
K Merry ◽  
A Littlewood ◽  
M Gowen

Using in situ hybridization, we investigated the expression of mRNA for interleukin-1 beta (IL1 beta), interleukin-6 (IL6), and transforming growth factor-beta-1 (TGF beta 1) in sections of developing bone in human osteophytes. The expression was related to the cellular activity of alkaline phosphatase to aid in the identification of pre-osteoblast populations. IL1 beta mRNA was localized in active osteoblasts within distinct areas of intramembranous ossification. However, the expression was sporadic and appeared to occur at a specific stage of the osteoblast life cycle. There was no IL1 beta mRNA expression in any cell types during endochondral ossification. IL6 mRNA expression was located within pre-osteoblasts and in newly differentiated and matrix-secreting osteoblasts; expression was absent or reduced in flattened, inactive osteoblasts. Weak or no IL6 expression was observed in chondroblasts and chondrocytes, respectively. However, there was a close association between IL6 mRNA expression and the differentiation of mesenchymal cells into osteoblasts. TGF beta 1 expression was localized to osteoblasts apposed to bone or cartilage matrix; the intensity of expression correlated with matrix secretion. Chondroblasts and chondrocytes expressed lower but significant levels of TGF beta 1 mRNA; the expression was lost with the progression to calcifying cartilage. The three cytokines studied were differentially expressed both temporally and spatially, suggesting different roles for each in osteoblast and chondrocyte function.


Blood ◽  
1990 ◽  
Vol 76 (10) ◽  
pp. 1946-1955 ◽  
Author(s):  
RA Fava ◽  
TT Casey ◽  
J Wilcox ◽  
RW Pelton ◽  
HL Moses ◽  
...  

We have directly demonstrated that megakaryocytes are a major site of synthesis and storage of transforming growth factor-beta 1 (TGF/beta 1) by combined immunohistochemical, immunocytochemical, and in situ hybridization methods. The presence of TGF/beta 1 messenger RNA (mRNA) in mature megakaryocytes in adult rat spleen and bone marrow (BM) was established by in situ hybridization. Localization of TGF/beta 1 protein to intact alpha-granules of megakaryocytes, its putative storage site, was accomplished in glycol-methacrylate embedded porcine BM with an immunoperoxidase technique and light microscopy. The TGF/beta 1 was sequestered in intracytoplasmic granules in a pattern virtually identical to that of another alpha-granule marker protein, fibrinogen. This observation strongly suggests packaging of TGF/beta 1 into this organelle within megakaryocytes. That TGF/beta 1 mRNA was localized to megakaryocytes suggests that the TGF/beta 1 found in the alpha-granules in platelets originates with megakaryocyte synthesis. The alpha-granule localization of TGF/beta 1, as well as fibrinogen, was also demonstrated in isolated platelets at the ultrastructural level by electronmicroscopy (EM) and postembedding colloidal-gold immunocytochemistry, thus directly demonstrating that alpha-granules are the final storage site for TGF/beta 1 in mature platelets.


Development ◽  
1991 ◽  
Vol 113 (3) ◽  
pp. 867-878 ◽  
Author(s):  
S.D. Robinson ◽  
G.B. Silberstein ◽  
A.B. Roberts ◽  
K.C. Flanders ◽  
C.W. Daniel

Transforming Growth Factor-beta 1 (TGF-beta 1) was previously shown to inhibit reversibly the growth of mouse mammary ducts when administered in vivo by miniature slow-release plastic implants. We now report a comparative analysis of three TGF-beta isoforms with respect to gene expression and localization of protein products within the mouse mammary gland. Our studies revealed overlapping expression patterns of TGF-beta 1, TGF-beta 2 and TGF-beta 3 within the epithelium of the actively-growing mammary end buds during branching morphogenesis, as well as within the epithelium of growth-quiescent ducts. However, TGF-beta 3 was the only isoform detected in myoepithelial progenitor cells (cap cells) of the growing end buds and myoepithelial cells of the mature ducts. During pregnancy, TGF-beta 2 and TGF-beta 3 transcripts increased to high levels, in contrast to TGF-beta 1 transcripts which were moderately abundant; TGF-beta 2 was significantly transcribed only during pregnancy. Molecular hybridization in situ revealed overlapping patterns of expression for the three TGF-beta isoforms during alveolar morphogenesis, but showed that, in contrast to the patterns of TGF-beta 1 and TGF-beta 2 expression, TGF-beta 3 is expressed more heavily in ducts than in alveoli during pregnancy. Developing alveolar tissue and its associated ducts displayed striking TGF-beta 3 immunoreactivity which was greatly reduced during lactation. All three isoforms showed dramatically reduced expression in lactating tissue. The biological effects of active, exogenous TGF-beta 2 and TGF-beta 3 were tested with slow-release plastic implants. These isoforms, like TGF-beta 1, inhibited mammary ductal elongation in situ by causing the disappearance of the proliferating stem cell layer (cap cells) and rapid involution of ductal end buds. None of the isoforms were active in inhibiting alveolar morphogenesis. We conclude that under the limited conditions of these tests, the three mammalian isoforms are functionally equivalent. However, striking differences in patterns of gene expression and in the distribution of immunoreactive peptides suggest that TGF-beta isoforms may have distinct roles in mammary growth regulation, morphogenesis and functional differentiation.


Sign in / Sign up

Export Citation Format

Share Document