Automated digital enumeration of plasma cells in bone marrow trephine biopsies of multiple myeloma

2020 ◽  
pp. jclinpath-2020-207066
Author(s):  
Jacques A J Malherbe ◽  
Kathryn A Fuller ◽  
Bob Mirzai ◽  
Bradley M Augustson ◽  
Wendy N Erber

AimsDetermination of the number of plasma cells in bone marrow biopsies is required for the diagnosis and ongoing evaluation of plasma cell neoplasms. We developed an automated digital enumeration platform to assess plasma cells identified by antigen expression in whole bone marrow sections in multiple myeloma, and compared it with manual assessments.MethodsBone marrow trephine biopsy specimens from 91 patients with multiple myeloma at diagnosis, remission and relapse were stained for CD138 and multiple myeloma oncogene 1 (MUM1). Manual assessment and digital quantification were performed for plasma cells in the entire trephine section. Concordance rates between manual and digital methods were evaluated for each antigen by intraclass correlation analyses (ICC) with associated Spearman’s correlations.ResultsThe digital platform counted 16 484–1 118 868 cells and the per cent CD138 and MUM1-positive plasma cells ranged from 0.05% to 93.5%. Overall concordance between digital and manual methods was 0.63 for CD138 and 0.89 for MUM1. Concordance was highest with diffuse plasma cell infiltrates (MUM1: ICC=0.90) and lowest when in microaggregates (CD138: ICC=0.13). Manual counts exceeded digital quantifications for both antigens (CD138: mean=26.4%; MUM1: mean=9.7%). Diagnostic or relapse threshold counts, as determined by CD138 manual assessments, were not reached with digital counting for 16 cases (18%).ConclusionsAutomated digital enumeration of the entire, immunohistochemically stained bone marrow biopsy section can accurately determine plasma cell burden, irrespective of pattern and extent of disease (as low as 0.05%). This increases precision over manual visual assessments which tend to overestimate plasma burden, especially for CD138, and when plasma cells are in clusters.

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 5338-5338
Author(s):  
Finella MC Brito-Babapulle ◽  
Tanya Cranfield ◽  
Robert B Corser ◽  
Helen Dignum ◽  
Christopher James ◽  
...  

Abstract Mouse eosinophils have been shown in 2011 to be required for the maintenance of long lasting plasma cells in the bone marrow and in maintaining the bone marrow plasma cell microenvironment. Human eosinophils have been shown by Wong et al to support multiple myeloma cell proliferation via a mechanism independent of IL6. We looked at bone marrow biopsies taken from patients who had a paraprotein and in whom a diagnosis of multiple myeloma was suspected. These samples were taken solely for the purposes of diagnosisng multiple myeloma and were retrospectively reviewed from the point of view of degree of eosinophil infiltration and its correlation with tumour load, bone lytic lesions, plasma cell morphology, whether blastic, crystalline inclusions, Mott cells, flame cells and or lymphoplasmacytoid. There were no cases of IGD or E myeloma or osteosclerotic myeloma.Nonsecretory myeloma and cases of light chain myeloma with or without amyloid were included in the series. Biopsies were not performed from osteolytic lesion unless biopsy was necessary to make a diagnosis of myeloma. Myeloma was diagnosed when plasma cell infiltrate was greater than 10% on bone marrow aspirate with a paraprotein and or lytic lesions. Eosinophil infiltration did not correlate with any of the tumour clinicopathological markers but showed an inverse correlation with degree of plasmacytosis. Eosinophils were hardly ever found in marrow aspirates that had over 70% plasma cells. They were usually found in trephine sections of bone marrow in areas where there was Grade I/II fibrosis and were often found in close proximity to focal areas of plasma cell infiltration. Whether eosinophils play a role in preventing or maintaining malignant plasma cell recurrence is currently being studied. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2880-2880
Author(s):  
Prashant Ramesh Tembhare ◽  
Constance Yuan ◽  
Neha Korde ◽  
Irina Maric ◽  
Katherine Calvo ◽  
...  

Abstract Abstract 2880 Background: The percent abnormal plasma cells (aPC) as determined by flow cytometry (FC) has been shown to be an independent risk factor for progression from myeloma precursor disease (monoclonal gammopathy of uncertain significance, MGUS; smoldering multiple myeloma, SMM) to multiple myeloma (MM). However, differentiation of aPCs from normal PCs (nPCs) in these patients is challenging. MM cell lines are know to underexpress the tetraspanin proteins (e.g. CD81, CD82) in comparison to nPCs. Although CD81, a nonglycosylated tetraspanin, is robustly expressed on the surface of nPCs, little information is available regarding its expression in the aPCs of MM, SMM and MGUS. In this study we evaluate the expression of CD81 in conjunction with CD19, CD45 and CD56 in bone marrow aPCs and nPCs from patients with MM, SMM and MGUS. Methods: Bone marrow aspirates from 41 patients (9 MGUS, 22 SMM, 7 MM, 3 non-neoplastic with clinical suspicion of MGUS) were analyzed with 8-color multiparametric FC using a panel of antibodies (CD138, CD38, CD19, CD20, CD27, CD28, CD45, CD56, CD81, CD13, CD14, CD16, CD3, CD34 and intracellular kappa & lambda light chains). The pattern of surface antigen and intracellular light chain expression was utilized to determine the percent aPC (defined as monoclonal with aberrant antigen expression) and percent nPC (defined as polyclonal with normal antigen expression). In all cases the pattern of antigen expression was evaluated in the aPCs; additionally, in cases with greater than 5% nPCs (19/41 patients: 8 MGUS, 8 SMM and 3 non-neoplastic) the pattern of antigen expression was evaluated in the nPCs. The ability to detect clonal aPC by evaluation of FC pattern of antigen expression was determined and compared for CD19, CD45, CD56 and CD81. We also examined the sensitivity and specificity of the CD19 and CD81 combination verses the conventional combination of CD19, CD56 and CD45 (Perez-Persona et al, Blood 2007) for the detection of clonal aPC. Results: CD81 was strongly expressed by nPC (average mean fluorescent intensity (MFI): 11500, standard deviation (SD): 5061, range: 5347–21657) in contrast to aPC with abnormally weak expression (average MFI: 1487, SD: 887, range: 647–4311). CD81 was a highly reliable marker for the detection of clonal PC; with 90% sensitivity and 100% specificity. It was the most specific and second most sensitive marker in our study (Table 1). CD81 was equally sensitive in detection of aPCs in MGUS, SMM and MM. Evaluation of the combined pattern of expression of CD19 and CD81 resulted in 100% sensitivity and 100% specificity for detection of aPC, which is greater than the conventional combination of CD19, CD56 and CD45, yielding 100% sensitivity but 90% specificity, for diagnostic evaluation of aPC. Conclusions: CD81 is a highly reliable marker in the detection of abnormal plasma cells in MM, SMM and MGUS. The combined approach of CD19 and CD81 is superior to other conventional marker combinations (i.e. CD19, CD45, and CD56) in terms of detection of clonal plasma cells and may replace their use in the clinical evaluation of bone marrow aspirates for plasma cell processes. Furthermore, it should help widening the applicability of minimal residual disease testing in MM. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 327-327
Author(s):  
Takashi Asai ◽  
Silvia Menendez ◽  
Delphine Ndiaye-Lobry ◽  
Anthony R Deblasio ◽  
Kazunori Murata ◽  
...  

Abstract Abstract 327 Multiple myeloma is characterized by the progressive expansion of monoclonal plasma cells in the bone marrow, which leads to the production of serum and/or urine monoclonal proteins and systemic complications including lytic bone lesions, renal abnormalities hypercalcemia, and infections. Although the treatment of multiple myeloma has vastly improved, multiple myeloma remains a generally incurable disease. Transgenic mouse models have been generated that develop plasma cell accumulations or myeloma, however these models are quite imperfect in mimicking the human disease. Quite serendipitously, we have generated a multi-stage, progressive, and transplantable mouse model of multiple myeloma, crossing a genetically modified mouse with aberrant class switch recombination with another modified mouse that has elevated DNA damage response signaling. We have reported that cells expressing the hypermorphic Rad50s allele show constitutive ATM activation, leading to cancer predisposition and aggressive hematopoietic failure in Rad50s/s mice. While deficiency of the transcription factor Mef/Elf4, which regulates the quiescence of hematopoietic stem/progenitor cells, can mitigate hematopoietic failure observed in Rad50s/s mice, we found that 70% of Mef−/−Rad50s/s mice more than 200 days old died from multiple myeloma, plasmacytoma, or plasma cell leukemia, confirmed by pathology, immunohistochemistry, flowcytometry (CD138/B220 profiles), and PCR analysis for VDJ recombination. Prior to the onset of the plasma cell neoplasms, the Mef−/−Rad50s/s mice show abnormal plasma cell accumulation in the peripheral blood and bone marrow, which worsens with age. As the mice age, they also develop progressive increases in g-globulin levels and decreases in serum albumin levels. Monoclonal protein peaks were frequently observed in the serum of mice older than 200 days, and in step with the progressive nature of these manifestations, anemia and lower bone mineral density becomes apparent as the mice further age. Overall, the median survival of the Mef−/−Rad50s/s mice is approximately 470 days. The plasma cell neoplasms derived from Mef−/−Rad50s/s mice can be transplanted into recipient mice and the onset of the transplanted disease is markedly accelerated, to approximately 4 weeks post transplantation. Thus, the transplanted neoplastic Mef−/−Rad50s/s plasma cells appear to be more aggressive than the original ones. Taken together, our findings suggest that the Mef−/−Rad50s/s animal model can recapitulate the spectrum and pace of human plasma cell neoplasms, including the progression from monoclonal gammopathy to multiple myeloma. Class switch recombination is facilitated in Mef−/−Rad50s/s B cells in vitro, compared with control, Mef−/−, and Rad50s/s B cells, thus the plasma cell neoplasms found in Mef−/−Rad50s/s mice may result from Rad50s-driven oncogenesis. This novel Mef−/−Rad50s/s myeloma animal model should be useful for the drug screening of novel anti-myeloma compounds, as well as defining the pathogenesis of multiple myeloma/plasma cell neoplasms. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2073-2073
Author(s):  
Sajitha Sachchithanantham ◽  
Ruth M de Tute ◽  
Anna Baginska ◽  
Christopher Parrish ◽  
Shameem Mahmood ◽  
...  

Abstract Background: Systemic AL amyloidosis is a rare complication of plasma cell dyscrasias. Much progress has occurred in treatment of AL amyloidosis but long term survival remains limited with advanced organ involvement, in particular, cardiac dysfunction determining outcomes. However, controlling the underlying plasma cell clone with chemotherapy or ASCT is the key to improving outcomes. Yet the role of plasma cell clones in determining prognosis remains to be fully explored and understood. The plasma cell burden in patient with AL amyloidosis is generally lower than that of multiple myeloma but reported degree of plasma cell infiltration has varied. A large study from the Mayo group reported markedly poor outcomes for patients with AL amyloidosis who have >10% BMPCs, even in the absence of symptomatic myeloma (Kourelis et al, JCO 2013). However, apart from just the number of BMPC, the composition appears to be of importance. Multiparameter flow cytometry (MFC) can identify proportion of normal and clonal plasma cells. Patients with >5% “normal” BMPC (defined as cells expressing CD38+CD138+CD19+) at diagnosis had a better prognosis (Paiva et al. Blood 2011). MFC underestimates the total proportion of BMPCs due to sample dilution effect. We report the impact of ‘normal' plasma cells, as determined by MFC, on the outcome of AL patients in context of the total plasma cell burden as determined by standard morphological techniques in 104 patients with biopsy proven systemic AL amyloidosis, who had both bone marrow trephine and MFC performed at presentation between 2005-2013 assessed at UK National amyloidosis centre and St James's University Hospital. Methods: The bone marrow trephine biopsy (BMTB) plasma cell burden was estimated by morphology supplemented by CD138 immunohistochemistry as required. Patients with >10% CD138+ cells were classified as having AL-multiple myeloma (AL-MM) and those with <10% CD138+ cells as having AL-MGUS. Six or eight colour MFC was used to assess the proportion of CD38+CD138+ plasma cells expressing CD19 in the bone marrow aspirate samples. Results: The median age was 64.8 years (range: 38.5-83.3) with a male-female ratio of 1.7:1. 58 (56%) had cardiac involvement. All patients had treatment and the longest follow up was 8.3 years with 52 patients alive at the time of analysis. BMTB was inadequate for 3 patients, of the remaining 101 patients, 59 (57%) had >10% CD138+ PCs on trephine (classed as AL-MM) and 42 (40%) had <10% (classed as AL-MGUS). All patients had MFC and the median number of ‘normal' PCs was 4.07% (range 0-72.57%). The median neoplastic PC% was 95.9 (range : 9.8-95.3). All patients had CD19 negative PC demonstrable, of which 61 (58%) had CD56 expression thereby confirming the diagnostic utility of MFC in this setting. ROC analysis gave 10% as the most significant cut-off for “normal” PC. 31 (30%) patients had greater than 10% ‘normal' PCs; 22 (52%) and 8(14%) with underlying AL-MGUS and AL-MM respectively (p<0.001). There was a statistically significant negative correlation between the BMTB PC% and the ‘normal' PC quantity on MFC (Spearman correlation -0.419, p=0.000). The median overall survival (OS) for the whole cohort was 26 months and that for those with AL-MGUS was 37.9months and AL-MM 18.1 months (p=0.140). Those patients with >10% normal PCs had a significantly superior survival (53.4months) compared to those with <10% normal PCs (16 months) (p = 0.019) on MFC (Figure 1). When outcome was assessed according to overall BM burden and MFC it was clear that the presence of >10% normal PCs conferred a favourable outcome regardless of the BM burden (Figure 2, p=0.075). Outcomes were similar for AL-MM and AL-MGUS in those patients with >10% normal PC (p=0.824) and those with <10% (p=0.755). Conclusion: In this study we have confirmed the value of MFC in patients with AL amyloid. Abnormal PC populations are demonstrable in all patients confirming the utility of the assay for diagnostic purposes. This is particularly relevant for those patients with low BM burden. Similarly the presence / absence of normal plasma cells by MFC had a significant effect on outcome which was demonstrable in patients with both AL-MGUS and AL-MM. MFC should be included in the diagnostic workup of all patients with AL. Further studies are required to determine how this additional prognostic data can be incorporated into existing prognostic models. Figure 1: Figure 1:. Figure 2: Figure 2:. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2713-2713
Author(s):  
Cheryl H Rozanski ◽  
Jayakumar Nair ◽  
Louise Carlson ◽  
Kelvin P. Lee

Abstract The long term generation of protective antibodies (Abs) requires the continuous survival of long-lived plasma cells that are maintained within specialized bone marrow niches by complex interactions that remain largely uncharacterized. Previous studies have shown that the T cell costimulatory receptor CD28 is expressed on normal and transformed (murine plasmacytoma, human multiple myeloma) plasma cells – however, its role in the B cell lineage remained unclear. We have recently shown that CD28 expressed on transformed human plasma cells (multiple myeloma cells) directly delivers pro-survival signals to the myeloma cells and protects them against intrinsically and extrinsically induced death (Bahlis et al, 2007). Furthermore, myeloma cells directly interact with dendritic cells (DC, both in vitro and in patient bone marrow biopsies), and the DC provide the ligands (i.e. CD80 and CD86) for myeloma-CD28. Others studies utilizing competitive bone marrow reconstitution have indirectly suggest a role for CD28 in the function and/or survival of normal murine plasma cells (Delogu et al, 2006). These observations led us to directly investigate the role of CD28 in normal plasma cell survival as well as cell-cell interactions with CD80/CD86+ bone marrow derived dendritic cells (BMDC). In vitro serum starvation experiments, direct activation of CD28 by an agonistic anti-CD28 mAb increased survival of serum-starved PC by 63% (p&lt;0.001). Addition of BMDC improved the survival of PC by 20% over that seen with media alone, and resulted in a significant increase in IgG production (p&lt;0.01). We and others have shown that CD28 binding to CD80/CD86 on DC also “backsignals” to the DC to produce the PC survival factor IL-6. We found that co-culture with the murine plasmacytoma cell line S194 induced 155 pg/ml of IL-6 from BMDC (p&lt;0.01 vs. BMDC alone and S194 alone), and primary plasma cells isolated from bone marrow induced 290 pg/ml of IL-6 from BMDC (p&lt;0.001 vs. BMDC alone). Induction of BMDC production of IL-6 by both primary and transformed PC was significantly inhibited (p&lt;0.05) by antibody blockade of CD80 and CD86. Our data demonstrates that signaling through CD28 directly supports the survival of normal bone marrow plasma cells, and that “backsignaling” through PC-CD28 engagement of DC-CD80/CD86 induces DC to secrete the pro-survival cytokine IL-6. These findings suggest that CD28 is a key molecular bridge that connect normal plasma cells to the supportive microenvironment.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4898-4898
Author(s):  
Eun Hae Cho ◽  
Sang-Mi Lee ◽  
Hyeon-Seok Eom ◽  
In-Suk Kim ◽  
Gyeong-Won Lee ◽  
...  

Abstract Abstract 4898 Introduction The technique of fluorescence immunophenotyping and interphase cytogenetics as a tool for the investigation of neoplasms has recently been introduced to detect molecular cytogenetic abnormalities in plasma cell myeloma of bone marrow (BM) aspirate. However, in case of sub-optimal BM aspirate or the focal distribution of myeloma in the BM, the plasma cells are significantly lower in the BM aspirate than those of biopsy section. Therefore, we have developed a sensitive fluorescence in situ hybridization (FISH) technique which is combined with immunochemistry and is applicable to BM biopsy section for molecular cytogenetic study of plasma cell neoplasms. Patients and Methods Conventional cytogenetic analysis and FISH results of BM samples of 35 multiple myeloma (MM) patients at the time of diagnosis have been evaluated. The probe for IgH rearrangement has been used for hybridization with myeloma cells coupled with CD138 immunostain at BM biopsy section. Results Nineteen patients (54.3%) had abnormal FISH IgH results in biopsy section, whereas seven (20%) cases had abnormal findings in BM aspirate. FISH IgH analysis at biopsy section revealed various signal patterns and proportions (range 6-87%) of cells with atypical signals out of CD138 positive cells. Among five cases with <10% of plasma cells at BM aspirate, four (80%) had abnormal FISH results at biopsy section, whereas one (20%) had abnormal signals at aspirate. There is no correlation between the proportions of cells with atypical signal corrected by the plasma cell count at BM aspirate and the proportions of cells with atypical signal at biopsy section. Conclusions FISH analysis combined with immunostain which is applied at biopsy section is a highly sensitive and convenient technique to detect and quantify monoclonal plasma cells. It could be used for molecular cytogenetic study in plasma cell neoplasms even though there are less than 10% of plasma cells at BM aspirate and the monitoring of residual disease. Disclosures Kong: National cancer center, Korea: Research Funding.


2020 ◽  
Vol 154 (Supplement_1) ◽  
pp. S110-S110
Author(s):  
A Vijayanarayanan ◽  
K Inamdar ◽  
M Menon ◽  
P Kuriakose

Abstract Introduction/Objective Myeloma diagnosis by a pathologist requires 10% plasma cells (PC) or a biopsy proven plasmacytoma in addition to myeloma defining events. PC% &gt; 60% is a biomarker of malignancy under this definition. WHO allows for assesment of plasma cell percentage either by aspirate count or by CD138 immunohistochemistry (IHC). There is lack of consensus on aspirate smear adequacy for PC% estimation. Uneven distribution of plasma cells, hemodilution and/or patchy infiltration can lead to gross underestimation. We compared PC% by aspirate count and CD138 IHC and established corelation with serum protein electrophoresis (SPEP) values. Methods 67 myeloma cases were included after excluding cases with suboptimal or inadequate aspirate smears. Two hematopathologists evaluated the diagnostic marrow (therapy naive) for PC% by aspirate count and CD138 IHC on biopsy/clot section. Corresponding SPEP and Free light chain (FLC) values were obtained. Correlation coefficent was calculated using Pearson correlation coefficient (GraphPad Prism). Results The Ig subtypes included IgG (41/67) and IgA (17/67). 12 cases had available FLC values. Both average and median PC% by CD138 IHC was considerably higher (50%, 52%) compared to aspirate count (29%, 21%). However, PC% by aspirate smear count and CD138 IHC demonstrated a significant linear correlation (r=0.71, p60% by CD138 (and not by aspirate count). Conclusion CD138 IHC based PC% is consistently higher, nevertheless, statistically significant linear corelation is observed between aspirate count PC% and CD138 IHC. A significant linear correlation is observed between CD138 IHC and SPEP (IgG and IgA), however, no such correlation is observed with aspirate count. More cases were diagnosed as myeloma (11%) and higher propotion of cases (35%) had biomarker of malignancy i.e. PC% &gt;60% by CD138 IHC. Based on these findings, we propose estimation of PC% by CD138 immunostain be a recommended standard practice for better clinicopathologic and biologic correlation.


Blood ◽  
1984 ◽  
Vol 64 (2) ◽  
pp. 352-356
Author(s):  
GJ Ruiz-Arguelles ◽  
JA Katzmann ◽  
PR Greipp ◽  
NJ Gonchoroff ◽  
JP Garton ◽  
...  

The bone marrow and peripheral blood of 14 patients with multiple myeloma were studied with murine monoclonal antibodies that identify antigens on plasma cells (R1–3 and OKT10). Peripheral blood lymphocytes expressing plasma cell antigens were found in six cases. Five of these cases expressed the same antigens that were present on the plasma cells in the bone marrow. Patients that showed such peripheral blood involvement were found to have a larger tumor burden and higher bone marrow plasma cell proliferative activity. In some patients, antigens normally found at earlier stages of B cell differentiation (B1, B2, and J5) were expressed by peripheral blood lymphocytes and/or bone marrow plasma cells.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 4-5
Author(s):  
Lijun Yao ◽  
Reyka G Jayasinghe ◽  
Tianjiao Wang ◽  
Julie O'Neal ◽  
Ruiyang Liu ◽  
...  

Multiple myeloma (MM) is a hematological cancer of the antibody-secreting plasma cells. Despite therapeutic advancements, MM remains incurable due to high incidence of drug-resistant relapse. In recent years, targeted immunotherapies, which take advantage of the immune system's cytotoxic defenses to specifically eliminate tumor cells expressing certain cell surface and intracellular proteins have shown promise in combating this and other B cell hematologic malignancies. A major limitation in the development of these therapies lies in the discovery of optimal candidate targets, which require both high expression in tumor cells as well as stringent tissue specificity. In an effort to identify potential myeloma-specific target antigens, we performed an unbiased search for genes with specific expression in plasma and/or B cells using single-cell RNA-sequencing (scRNAseq) of 53 bone marrow samples taken from 42 patients. By comparing &gt;40K plasma cells to &gt;97K immune cells across our cohort, we were able to identify a total of 181 plasma cell-associated genes, including 65 that encode cell-surface proteins and 116 encoding intracellular proteins. Of particular interest is that the plasma cells from each patient were shown to be transcriptionally distinct with unique sets of genes expressed defining each patient's malignant plasma cells. Using pathway enrichment analysis, we found significant overrepresentation of cellular processes related to B-Cell receptor (BCR) signaling, protein transport, and endoplasmic reticulum (ER) stress, involving genes such as DERL3, HERPUD1, PDIA4, PDIA6, RRBP1, SSR3, SSR4, TXNDC5, and UBE2J1. To note, our strategy successfully captured several of the most promising MM therapeutic targets currently under pre-clinical and clinical trials, including TNFRSF17(BCMA), SLAMF7, and SDC1 (CD138). Among these, TNFRSF17 showed very high plasma cell expression, with concomitant sharp exclusion of other immune cell types. To ascertain tissue specificity of candidate genes outside of the bone marrow, we analyzed gene and protein expression data from the Genotype-Tissue Expression (GTEx) portal and Human Protein Atlas (HPA). We found further support for several candidates (incl. TNFRSF17,SLAMF7, TNFRSF13B (TACI), and TNFRSF13C) as being both exclusively and highly expressed in lymphoid tissues. While several surface candidates were not found to be lymphocyte-restricted at the protein level, they remain relevant considerations as secondary targets for bi-specific immunotherapy approaches currently under development. To further investigate potential combinatorial targeting, we examine sample-level patterns of candidate co-expression and mutually-exclusive expression using correlation analysis. As the majority of our detected plasma cell-specific genes encode intracellular proteins, we investigated the potential utility of these epitopes as therapeutic targets via MHC presentation. Highly expressed candidates include MZB1, SEC11C, HLA-DOB, POU2AF1, and EAF2. We analyzed protein sequences using NetMHC and NETMHCII to predict high-affinity peptides for common class-I and class-II HLA alleles. To correlate MHC allelic preference with candidate expression in our cohort, we performed HLA-typing for 29 samples using Optitype. To support our scRNAseq-driven findings, we cross-referenced gene expression data with 907 bulk RNA-sequencing samples, including 15 from internal studies and 892 from the Multiple Myeloma Research Foundation (MMRF), as well as bulk global proteomics data from 4 MM cell lines (TIB.U266, RPMI8226, OPM2, MM1ST) and 4 patients. We see consistent trends across both cohorts, with high positive correlation (Pearson R ranging between 0.60 and 0.99) for a majority of genes when comparing scRNA and bulk RNA expression in the same samples. Our experimental design and analysis strategies enabled the efficient discovery of myeloma-associated therapeutic target candidates. In conclusion, this study identified a set of promising myeloma CAR-T targets, providing novel treatment options for myeloma patients. Disclosures Goldsmith: Wugen Inc.: Consultancy. DiPersio:Magenta Therapeutics: Membership on an entity's Board of Directors or advisory committees.


Sign in / Sign up

Export Citation Format

Share Document