scholarly journals O2 Directly linking single T cell phenotype and function to genotype

2020 ◽  
Vol 8 (Suppl 2) ◽  
pp. A4.1-A4
Author(s):  
Y Bronevetsky

T cell therapies for cancer treatment are challenging to develop because of the complex mechanisms and cell interactions that underly T cell-mediated tumor killing. Current technologies rely on correlating phenotype, function, and gene expression based on experiments performed on different populations of T cells because no one platform is able to assess cell surface marker expression, cytokine secretion, and tumor cell killing activity of the same T cell and recover this cell for downstream genomic analysis. Here we share two use cases - CAR-T cell functional screening and TCR sequence recovery following functional assay - that demonstrate how the T Cell Analysis Suite on the LightningTM optofluidic platform can be used to directly link T cell phenotype and function (IFNγ secretion and tumor cell killing) to genotype (TCR sequence recovery) at a single-cell level and on the same T cell, enabling deeper and more thorough characterization of how T cells mediate tumor cell death and potentially the development of more efficacious therapies.Disclosure InformationY. Bronevetsky: A. Employment (full or part-time); Significant; Berkeley Lights Inc.

Blood ◽  
2012 ◽  
Vol 120 (22) ◽  
pp. 4334-4342 ◽  
Author(s):  
Qi Zhou ◽  
Irene C. Schneider ◽  
Inan Edes ◽  
Annemarie Honegger ◽  
Patricia Bach ◽  
...  

AbstractTransfer of tumor-specific T-cell receptor (TCR) genes into patient T cells is a promising strategy in cancer immunotherapy. We describe here a novel vector (CD8-LV) derived from lentivirus, which delivers genes exclusively and specifically to CD8+ cells. CD8-LV mediated stable in vitro and in vivo reporter gene transfer as well as efficient transfer of genes encoding TCRs recognizing the melanoma antigen tyrosinase. Strikingly, T cells genetically modified with CD8-LV killed melanoma cells reproducibly more efficiently than CD8+ cells transduced with a conventional lentiviral vector. Neither TCR expression levels, nor the rate of activation-induced death of transduced cells differed between both vector types. Instead, CD8-LV transduced cells showed increased granzyme B and perforin levels as well as an up-regulation of CD8 surface expression in a small subpopulation of cells. Thus, a possible mechanism for CD8-LV enhanced tumor cell killing may be based on activation of the effector functions of CD8+ T cells by the vector particle displaying OKT8-derived CD8-scFv and an increase of the surface density of CD8, which functions as coreceptor for tumor-cell recognition. CD8-LV represents a powerful novel vector for TCR gene therapy and other applications in immunotherapy and basic research requiring CD8+ cell-specific gene delivery.


2019 ◽  
Vol 203 (4) ◽  
pp. 1076-1087 ◽  
Author(s):  
Aeryon Kim ◽  
Chia-Jung Han ◽  
Ian Driver ◽  
Aleksandra Olow ◽  
Andrew K. Sewell ◽  
...  

2019 ◽  
Vol 203 (7) ◽  
pp. 2023-2024
Author(s):  
Aeryon Kim ◽  
Chia-Jung Han ◽  
Ian Driver ◽  
Aleksandra Olow ◽  
Andrew K. Sewell ◽  
...  

2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 8044-8044
Author(s):  
Marie-Agnès Doucey ◽  
Blandine Pouleau ◽  
Carole Estoppey ◽  
Cian Stutz ◽  
Amelie Croset ◽  
...  

8044 Background: ISB 1342 is a bispecific antibody heterodimer based on the Ichnos proprietary Bispecific Engagement by Antibodies based on T cell receptor (BEAT) platform. ISB 1342 is a first-in-class CD38 T cell engager under investigation in subjects with relapsed multiple myeloma refractory to proteasome inhibitors (PIs), immunomodulators (IMiDs) and daratumumab (study ISB 1342-101). Methods: ISB 1342 was engineered with a single chain variable fragment (scFv) arm that specifically recognizes a cluster of differentiation (CD)3-epsilon (CD3ε) and a fragment antigen binding (Fab) arm which specifically recognizes CD38 and does not compete with daratumumab. By co-engaging CD3ε on T cells and CD38 on tumor cells, ISB 1342 redirects T cells to kill CD38-expressing tumor cells. This mechanism of action is differentiated from existing monospecific CD38 targeting therapies and was designed to overcome resistance to daratumumab in multiple myeloma. Results: In vitro, ISB 1342 killed a large range of CD38-expressing tumor cell lines (EC50:12 to 90 pM) with 8 to 239-fold superior efficacy than daratumumab. ISB 1342 was also able to efficiently kill CD38 low-intermediate-expressing tumor cells that were poorly killed by daratumumab. ISB 1342 retained the potency to kill CD38 low-intermediate-expressing tumor cells when used in sequential or concomitant combination with daratumumab. In addition, the presence of soluble CD38 or glucocorticoid did not impact ISB 1342 killing potency. ISB 1342 was constructed with a double LALA mutation that dampens the binding to Fcγ receptors and C1q. Consistently, ISB 1342 showed only residual Fc-mediated effector functions and its mechanism of tumor cell killing critically relies on the engagement and the activation of T lymphocytes. ISB 1342 showed a favorable on target specificity profile in vitro and was unable to activate T cells in the absence of CD38 positive target cells. Further, ISB 1342-induced tumor cell killing was not associated with a detectable T cell fratricide in vitro. Finally, the potency of ISB 1342 was assessed in vivo in a therapeutic model of a subcutaneously established Daudi tumor co-xenografted with human PBMCs. In marked contrast to daratumumab, which induced only a partial tumor control, ISB 1342 induced complete tumor eradication when injected intravenously weekly at 0.5 mg/kg. As anticipated, the ISB 1342 control molecule (ISB 1342_13DU) made of an irrelevant CD38 binder failed to control tumor growth. The release of the Granzyme A and B, TNF-alpha and CXCL-10 in the tumor micro-environment one week post-treatment was strongly and significantly increased by ISB 1342 but not by daratumumab and ISB 1342_13DU; this represents a correlate of anti-tumor immunity associated with ISB 1342 efficacy in vivo. Conclusions: Hence the higher potency of ISB 1342 relative to daratumumab supports the ongoing clinical development in multiple myeloma patients.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A102-A102
Author(s):  
Yelena Bronevetsky

BackgroundThe key challenges to developing T cell-based therapies center on the fact that T cell-mediated tumor death relies on complicated cell-cell interactions and several complex mechanisms. These therapies have also been associated with significant side effects related to cytokine release syndrome (CRS) and neurotoxicity, placing importance on understanding T cell anti-tumor functions like cytokine release and killing kinetics. Ideally, T cell therapies would be tailored to mediate the rapid destruction of multiple tumor cells while reducing these side effects.MethodsThe Berkeley Lights Opto™ Cell Therapy Development Workflow is a collection of software capabilities, reagents, and protocols that allow scientists to selectively measure cytokine secretion, visualize killing behavior, and sequence TCRs from individual cells in parallel. Here, we demonstrate its use for CAR-T cell phenotypic and functional screening as well as the discovery of TCRs associated with specific T cell behaviors.ResultsThe cumulative percentage of pens with tumor cell caspase-3 activity increased over time in pens loaded with CD19+ tumors, peaking at 50% tumor cell death after 16 hours of incubation. This is in contrast to only 10% of pens displaying tumor cell death in control pens loaded with CD19- tumor cells; control pens also exhibited slower killing kinetics. The single-cell resolution of the OptoSelect™ microfluidic chip enabled us to analyze each significant T cell-tumor cell interaction. We were able to directly compare differences in killing kinetics of individual T cells and link this tumor killing behavior to IFNγ secretion. We identified fast-killing and slow-killing CAR-T cells in a single-day experiment, which could then be exported for genomic analysis. We highlight an example where TCR alpha and beta sequences are recovered from single T cells after export.ConclusionsThe Opto™ Cell Therapy Development Workflow on Berkeley Lights systems enables researchers to correlate cytokine secretion to target cell killing behavior in CAR-mediated antigen recognition, discriminate CAR-T cell subsets based on kinetics of target cell killing, and link cytokine secretion and target cell killing behavior to TCR sequence in TCR-mediated antigen recognition.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4810-4810
Author(s):  
Roberta Aliperta ◽  
Marc Cartellieri ◽  
Anja Feldmann ◽  
Claudia Arndt ◽  
Stefanie Koristka ◽  
...  

Abstract Despite many years of research and great advances in the field, acute myeloid leukemia (AML) still remains one of the most challenging battle fields in the context of hematologic malignancies treatment. Although AML patients initially respond to conventional chemotherapy, a complete remission is rarely achieved and 5-year survival rates remain low especially in elderly patients. Hence, there is a pressing need for novel effective strategies for AML treatment to prevent relapse and treat minimal residual disease (MRD). The use of recombinant bispecific antibodies (bsAbs) for retargeting effector T lymphocytes towards cancer cells is recently emerging as a promising immunotherapeutic approach for tumor treatment. This class of small molecules is designed to bind simultaneously to a pre-defined tumor-associated antigen (TAA) on tumor cells and the activating CD3 complex on T cells. The cross-linkage of immune effector cell and tumor cell leads to a tumor-specific T cell activation and efficient target cell killing independently of the T cell receptor specificity. However, due to their low molecular mass, bsAbs have a short life span in vivo and consequently have to be continuously administrated to patients over prolonged time spans of several weeks to achieve clinical responses. As an alternative to continuous exogenous infusions of short-lived Abs we examined the use of engineered bone marrow-derived human mesenchymal stem cells (hMSCs) as cellular vehicles for the constant production and secretion of a fully humanized anti-CD33-anti-CD3 bsAb that targets the surface molecule CD33, which is widely overexpressed on AML blasts. Our studies demonstrate that gene-modified hMSCs are effective in releasing the bsAb at sufficient amounts to activate and redirect both human primary CD4+ and CD8+T cells from healthy donors against AML cells expressing varying levels of the CD33 antigen, leading to an efficient T cell-mediated tumor cell killing at low effector to target cell ratios and Ab concentrations. Most importantly, we could demonstrate that patient-derived T cells were able to suppress autologous AML blasts upon Ab-mediated cross-linkage over prolonged period of time without being affected by the presence of the modified hMSCs. Additional improvement of this system was achieved by the artificial expression of T cell co-stimulatory 4-1BB ligand (CD137L) on the hMSCs surface. The additional co-stimulatory signal provided by the engineered hMSCs resulted in an enhanced T cell proliferation, a higher pro-inflammatory cytokine release, and consequently in a more pronounced specific tumor cell killing already at earlier time-points. Taken together, our data could demonstrate that continuous in situ delivery of the anti-CD33-anti-CD3 bsAb by genetically modified hMSCs facilitates efficient activation of T cells for specific and efficient killing of AML blasts over prolonged period of time. Furthermore, as promising perspective of this approach for future in vivo application we are currently investigating on the development of biocompatible synthetic scaffolds as transplantable biomaterial-based production platforms for genetically engineered hMSCs as locally confined vehicle of immunotherapeutics. The implantation of these small engineered devices would ensure that the delivery of the anti-cancer agents can be controlled and stopped after tumor clearance by removing the scaffold at a desired time point. In this way, administration of ex vivo gene-modified hMSCs embedded in appropriate scaffolds would result in a continuous in situ production of recombinant Abs for effective and persistent levels of these therapeutic agents over time with low risk of side effects. Disclosures Cartellieri: Cellex Patient Treatment GmbH, Dresden, Germany: Employment. Ehninger:GEMoaB Monoclonals GmbH, Dresden, Germany: Employment, Patents & Royalties. Ehninger:GEMoaB Monoclonals GmbH, Dresden, Germany: Consultancy, Patents & Royalties. Bachmann:GEMoaB Monoclonals GmbH, Dresden, Germany: Consultancy, Patents & Royalties.


2021 ◽  
Vol 12 ◽  
Author(s):  
Rosanne D. Reitsema ◽  
Annemieke M. H. Boots ◽  
Kornelis S. M. van der Geest ◽  
Maria Sandovici ◽  
Peter Heeringa ◽  
...  

Vasculitis refers to inflammation of blood vessels and can cause a variety of serious complications depending on which vessels are affected. Two different forms of vasculitis are Giant Cell Arteritis (GCA) and Granulomatosis with Polyangiitis (GPA). GCA is the most common form of vasculitis in adults affecting the large arteries and can lead to visual impairment and development of aneurysms. GPA affects small- and medium-sized blood vessels predominantly in the lungs and kidneys resulting in organ failure. Both diseases can potentially be fatal. Although the pathogenesis of GCA and GPA are incompletely understood, a prominent role for CD4+ T cells has been implicated in both diseases. More recently, the role of CD8+ T cells has gained renewed interest. CD8+ T cells are important players in the adaptive immune response against intracellular microorganisms. After a general introduction on the different forms of vasculitis and their association with infections and CD8+ T cells, we review the current knowledge on CD8+ T-cell involvement in the immunopathogenesis of GCA and GPA focusing on phenotypic and functional features of circulating and lesional CD8+ T cells. Furthermore, we discuss to which extent aging is associated with CD8+ T-cell phenotype and function in GCA and GPA.


2021 ◽  
Vol 14 (11) ◽  
pp. 1172
Author(s):  
Daisuke Kamakura ◽  
Ryutaro Asano ◽  
Masahiro Yasunaga

As a breakthrough immunotherapy, T cell bispecific antibodies (T-BsAbs) are a promising antibody therapy for various kinds of cancer. In general, T-BsAbs have dual-binding specificity to a tumor-associated antigen and a CD3 subunit forming a complex with the TCR. This enables T-BsAbs to crosslink tumor cells and T cells, inducing T cell activation and subsequent tumor cell death. Unlike immune checkpoint inhibitors, which release the brake of the immune system, T-BsAbs serve as an accelerator of T cells by stimulating their immune response via CD3 engagement. Therefore, they can actively redirect host immunity toward tumors, including T cell recruitment from the periphery to the tumor site and immunological synapse formation between tumor cells and T cells. Although the low immunogenicity of solid tumors increases the challenge of cancer immunotherapy, T-BsAbs capable of immune redirection can greatly benefit patients with such tumors. To investigate the detailed relationship between T-BsAbs delivery and their T cell redirection activity, it is necessary to determine how T-BsAbs deliver antitumor immunity to the tumor site and bring about tumor cell death. This review article discusses T-BsAb properties, specifically their pharmacokinetics, redirection of anticancer immunity, and local mechanism of action within tumor tissues, and discuss further challenges to expediting T-BsAb development.


Sign in / Sign up

Export Citation Format

Share Document