scholarly journals 601 Development of improved small molecule STING agonists suitable for systemic administration

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A636-A636
Author(s):  
Maciej Rogacki ◽  
Stefan Chmielewski ◽  
Magdalena Zawadzka ◽  
Jolanta Mazurek ◽  
Katarzyna Wnuk-Lipińska ◽  
...  

BackgroundStimulator of Interferon Genes (STING) is a major player in the activation of robust innate immune response leading to initiation and enhancement of tumor-specific adaptive immunity. Several clinical and pre-clinical programs have shown that activation of the STING pathway triggers immune-mediated antitumor response. Although vast majority of programs focus on development of analogues of the endogenous STING ligands, their chemical nature and stability often limit their use to local administration. Herein, we present recent results from the development of our selective non-nucleotide, non-macrocyclic, small molecule direct STING agonists, suitable for systemic administration, characterized by improved activity in human immune cells.MethodsBinding to recombinant STING protein was examined using FTS, MST, FP and crystallography studies. Phenotypic screen was performed in THP-1 Dual reporter cells. Mouse bone marrow-derived dendritic cells (BMDC) were obtained from C57BL/6 mice and differentiated with mIL-4 and mGM-CSF. STING agonists were administered into BALB/c mice and cytokine release was measured in plasma. Additionally, mice were inoculated with CT26 murine colon carcinoma or EMT6 murine breast carcinoma cells and the compound was administered, followed by the regular tumor growth and body weight monitoring.ResultsRyvu’s small-molecule agonists demonstrate strong binding affinity to recombinant STING proteins across all tested species. The compounds bind to all human STING protein variants and trigger pro-inflammatory cytokine release from human immune cells regardless of the STING haplotype. Moreover, new generation of developed agonists show significantly improved binding to human protein as well as in vitro activity on human cells. Systemic, intravenous in vivo administration leads to a dose-dependent upregulation of STING-dependent pro-inflammatory cytokines, which results in a dose-dependent antitumor efficacy observed in CT26 and EMT6 mouse cancer models, leading to complete tumor remissions in all treated animals. Furthermore, observed efficacy is accompanied by development of a lasting immunological response demonstrated by lack of tumor engraftment or a delayed tumor growth in cured animals challenged with repeated inoculation of cancer cells.ConclusionsNew generation Ryvu’s STING agonists are strong and selective activators of STING-dependent signaling in both mouse and human immune cells promoting anti-tumor immunity. Treatment with Ryvu’s small-molecule STING agonists leads to engagement of the immune system which results in a complete tumor remission and development of immunological memory of the cancer antigens. The compounds show good selectivity and ADME properties enabling development for systemic administration. In addition developed compounds maintain small functional handles amenable to linker attachment making the series suitable for versatile development as single agents, for combinations with immunotherapies or as targeted agents.

Author(s):  
Magdalena Eschricht ◽  
Michael Lauck ◽  
Levent Akyüz ◽  
Rayk Behrendt ◽  
Reinhard Kurth ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Ruy Freitas Reis ◽  
Alexandre Bittencourt Pigozzo ◽  
Carla Rezende Barbosa Bonin ◽  
Barbara de Melo Quintela ◽  
Lara Turetta Pompei ◽  
...  

By June 2021, a new contagious disease, the Coronavirus disease 2019 (COVID-19), has infected more than 172 million people worldwide, causing more than 3.7 million deaths. Many aspects related to the interactions of the disease’s causative agent, SAR2-CoV-2, and the immune response are not well understood: the multiscale interactions among the various components of the human immune system and the pathogen are very complex. Mathematical and computational tools can help researchers to answer these open questions about the disease. In this work, we present a system of fifteen ordinary differential equations that models the immune response to SARS-CoV-2. The model is used to investigate the hypothesis that the SARS-CoV-2 infects immune cells and, for this reason, induces high-level productions of inflammatory cytokines. Simulation results support this hypothesis and further explain why survivors have lower levels of cytokines levels than non-survivors.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A800-A800
Author(s):  
Costa Salojin ◽  
Anna Gardberg ◽  
Valerie Vivat ◽  
Lei Cui ◽  
Jeffrey Lauer ◽  
...  

BackgroundTREX1 is an exonuclease that functions as a negative regulator of innate immunity. TREX1 controls dsDNA sensing in tumor and immune cells by preventing aberrant dsDNA buildup that triggers STING-mediated Type 1 Interferon (IFN) induction leading to priming of the adaptive immune system. Loss of function mutations in TREX1 and genetic ablation of trex1 in mice lead to induction of IFNbeta-driven autoimmunity. Thus, TREX1 is a promising target to elicit IFN-mediated anti-tumor immunity.MethodsTo characterize TREX1 inhibitors we developed cell-based assays utilizing human HCT116 carcinoma and THP-1 monocytic Dual reporter cell lines to monitor IRF activity. Activation of cGAS was assessed by measuring cGAMP levels in B16F10 melanoma cells. The potency of TREX1 inhibitors in primary human dendritic cells (DC)s was analyzed by measuring IFNbeta induction by exogenous dsDNA. Analysis of tumor growth inhibition following TREX1 inhibitor treatment was conducted in mouse syngeneic tumor models. TREX1 activity was assessed by measuring degradation of a custom dsDNA substrate.ResultsWe report here the development of a small molecule TREX1 inhibitor, CPI-381, with nanomolar cellular potency, which translated into a robust induction of IRF reporter activity. We observed a significant increase in cGAMP production in B16F10 cells transfected with DNA in the presence of CPI-381, suggesting that CPI-381-mediated inhibition of TREX1 leads to the activation of dsDNA sensors, such as cGAS. Treatment of THP-1 cells with CPI-381 induced the expression of several key ISG involved in innate immunity. Moreover, inhibition of TREX1 with CPI-381 phenocopied the effect of TREX1 genetic deletion in primary human DCs by upregulating IFNbeta. To evaluate whether TREX1 negatively regulates IFNbeta production in syngeneic tumor models, we knocked down trex1 in B16F10, MB49, MC38, and CT26 murine cells. Accumulation of cytosolic dsDNA resulted in a substantial increase in IFNbeta secretion by all four TREX1-KO cell lines.In vivo efficacy studies with CPI-381 demonstrated reduced tumor growth in the MC38 syngeneic tumor model either alone or in combination with anti-PD1. We observed a reduction of TREX1 activity in CPI-381 treated tumors, confirming an inverse relationship between TREX1 intra-tumor activity and tumor growth, and efficient target engagement after systemic (oral) delivery.ConclusionsWe have developed a first-in-class, potent TREX1 inhibitor demonstrating excellent in vitro and in vivo potency via enhancement of cytosolic dsDNA sensing and induction of IFNbeta in cancer and immune cells. CPI-381-induced tumor-intrinsic TREX1 inhibition elicits antitumor immunity as a single agent and increases response to immune checkpoint blockade via mechanisms downstream of TREX1 that activate type I IFN signaling.Ethics ApprovalAll animal work was approved and conducted under the oversight of the Charles River Accelerator and Development Lab (CRADL, Cambridge, MA) Institutional Animal Care and Use Committee (protocol # 2021-1258).


2010 ◽  
Vol 48 (08) ◽  
Author(s):  
M Moehler ◽  
M Sieben ◽  
S Roth ◽  
B Leuchs ◽  
C Dinsart ◽  
...  

Author(s):  
Gianni Monaco ◽  
Bernett Lee ◽  
Weili Xu ◽  
Seri Mustafah ◽  
You Yi Hwang ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
A. Farias ◽  
A. Soto ◽  
F. Puttur ◽  
C. J. Goldin ◽  
S. Sosa ◽  
...  

AbstractBrucella lumazine synthase (BLS) is a homodecameric protein that activates dendritic cells via toll like receptor 4, inducing the secretion of pro-inflammatory cytokines and chemokines. We have previously shown that BLS has a therapeutic effect in B16 melanoma-bearing mice only when administered at early stages of tumor growth. In this work, we study the mechanisms underlying the therapeutic effect of BLS, by analyzing the tumor microenvironment. Administration of BLS at early stages of tumor growth induces high levels of serum IFN-γ, as well as an increment of hematopoietic immune cells within the tumor. Moreover, BLS-treatment increases the ratio of effector to regulatory cells. However, all treated mice eventually succumb to the tumors. Therefore, we combined BLS administration with anti-PD-1 treatment. Combined treatment increases the outcome of both monotherapies. In conclusion, we show that the absence of the therapeutic effect at late stages of tumor growth correlates with low levels of serum IFN-γ and lower infiltration of immune cells in the tumor, both of which are essential to delay tumor growth. Furthermore, the combined treatment of BLS and PD-1 blockade shows that BLS could be exploited as an essential immunomodulator in combination therapy with an immune checkpoint blockade to treat skin cancer.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Keegan Guidolin ◽  
Lili Ding ◽  
Juan Chen ◽  
Brian C. Wilson ◽  
Gang Zheng

Abstract Porphysomes (PS) are liposome-like nanoparticles comprising pyropheophorbide-conjugated phospholipids that have demonstrated potential as multimodal theranostic agents for applications that include phototherapies, targeted drug delivery and in vivo fluorescence, photoacoustic, magnetic resonance or positron emission imaging. Previous therapeutic applications focused primarily on photothermal therapy (PTT) and suggested that PSs require target-triggered activation for use as photodynamic therapy (PDT) sensitizers. Here, athymic nude mice bearing subcutaneous A549 human lung tumors were randomized into treatment and control groups: PS-PDT at various doses, PS-only and no treatment negative controls, as well as positive controls using the clinical photosensitizer Photofrin. Animals were followed for 30 days post-treatment. PS-PDT at all doses demonstrated a significant tumor ablative effect, with the greatest effect seen with 10 mg/kg PS at a drug-light interval of 24 h. By comparison, negative controls (PS-only, Photofrin-only, and no treatment) showed uncontrolled tumor growth. PDT with Photofrin at 5 mg/kg and PS at 10 mg/kg demonstrated similar tumor growth suppression and complete tumor response rates (15 vs. 25%, p = 0.52). Hence, porphysome nanoparticles are an effective PDT agent and have the additional advantages of multimodal diagnostic and therapeutic applications arising from their intrinsic structure. Porphysomes may also be the first single all-organic agent capable of concurrent PDT and PTT.


Sign in / Sign up

Export Citation Format

Share Document