scholarly journals 102 The deep phenotype characterization of ‘Off-the-Shelf’ CD19-chimeric antigen receptor (CAR) T cells allows to identify their subset complexity and to optimize their manufacturing

2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A111-A112
Author(s):  
Cristina Maccalli ◽  
Asma Al-Sulaiti ◽  
Mohammed El-Anbari ◽  
Moza Al Khulaifi ◽  
Mohammed Toufiq ◽  
...  

BackgroundUmbilical cord blood (UCB) represents a promising source of T cells for the generation of ‘off-the-shelf’ T cells engineered to express a chimeric antigen receptor (CAR). This study is aimed at understanding the composition of T cell subsets within UCB-CAR-T cells.MethodsT cells, either from UCB or peripheral mononuclear cells (PBMCs) of healthy donors, were activated in vitro with CD3/CD28 mAbs either conjugated to magnetic beads (Dynabeads) or to a colloidal polymeric nanomatrix (TransAct; Miltenyi Biotec). T cells were then transduced with lentiviral vectors encoding for CD19-CD28z or CD19-4-1BBz CARs. The deep phenotype analyses of the CD19-CAR-T cells (N=32) was performed through a multidimensional flow cytometry to assess the expression/co-expression of T cell-associated markers (N=29). The NGFR was utilized as probe for the expression of CD19-CAR. To select the pertinent markers characterising the different groups, we applied a machine learning technique called L0-regularized logistic regression,1 2 and implemented in the R packageL0Learn. 5-fold cross-validation (CV) was used to select the optimal values of the tuning parameters. CD19-CAR-T cells have been also characterized for the transcriptomic profile by parallel quantitative PCR using the high throughput BioMark HD platform and for cytokines, perforin and granzyme B release upon the co-culture with CD19 expressing or not target cells.ResultsT lymphocytes UCB showed efficient expression of the CARs (40–70% of positive cells). Different T cell subsets could discriminate the composition of T cells activated with either Beads or TranAct. CD4+NGFR+CD45RA+ or CD8+NGFR+CD45RA+ T cells associated with different combinations of CCR7, CD62L, LAG3, CD57, CD56 could discriminate between cells activated with Beads vs. TranAct (figures 2–3). CD8+NGFR+CD45RO+CD279−CD152+ T cells were also differentially expressed in TranAct vs. Beads. The PCA analyses also highlighted differences in terms of CD19-CAR-T cell subsets (such as CD8+NGFR+CD45RO+CD62L+, CD8+NGFR+CD45RO+CCR7+, CD8+NGFR+CD45RO+CD272+TIM−3+, CD8+NGFR+CD45RO+CD272+TIM−3+, CD8+NGFR+CD45RA+CD272+TIM−3− and CD4+NGFR+CD45RA+CD272−TIM−3+) in PBMCs vs. UCBs (figure 1). In addition, bystander T cells with different phenotype not expressing the CARs were also detected within the populations of T cells with different origins. Similarly, different T subsets were found in relationship with the sources of T cells. These CD19-CAR-T cells were also characterized for the anti-tumor activity and transcriptomic profiling.Abstract 102 Figure 1PCA of CAR-T cells from UCB vs. PBMCsAbstract 102 Figure 2PCA of CAR-T cells from UCB to compare TransAct vs. beadsAbstract 102 Figure 3PCA of CD19-CAR-T cells to compare TransAct vs. Beads irrespective of the source of the T cellsConclusionsThe combination of deep phenotype characterization with novel statistical tools allowed to identify the complexity of subsets in the engineered T cells in relationship with the starting material and the methods for the activation of the lymphocytes. These findings have important implications for the optimization of the manufacturing of CD19-CAR-T cells.ReferencesAntoine Dedieu, Hussein Hazimeh, and Rahul Mazumder. Learningsparse classifiers: Continuous and mixed integer optimization perspectives. Journal of Machine Learning Research 2021.Hussein Hazimeh and Rahul Mazumder. Fast best subset selection: Coordinatedescent and local combinatorial optimization algorithms. Operations Research 2020;68(5):1517–1537.Ethics ApprovalSidra Medicine’s Ethics Board approval, #1812044429

PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248973
Author(s):  
Nami Iwamoto ◽  
Bhavik Patel ◽  
Kaimei Song ◽  
Rosemarie Mason ◽  
Sara Bolivar-Wagers ◽  
...  

Achieving a functional cure is an important goal in the development of HIV therapy. Eliciting HIV-specific cellular immune responses has not been sufficient to achieve durable removal of HIV-infected cells due to the restriction on effective immune responses by mutation and establishment of latent reservoirs. Chimeric antigen receptor (CAR) T cells are an avenue to potentially develop more potent redirected cellular responses against infected T cells. We developed and tested a range of HIV- and SIV-specific chimeric antigen receptor (CAR) T cell reagents based on Env-binding proteins. In general, SHIV/SIV CAR T cells showed potent viral suppression in vitro, and adding additional CAR molecules in the same transduction resulted in more potent viral suppression than single CAR transduction. Importantly, the primary determinant of virus suppression potency by CAR was the accessibility to the Env epitope, and not the neutralization potency of the binding moiety. However, upon transduction of autologous T cells followed by infusion in vivo, none of these CAR T cells impacted either acquisition as a test of prevention, or viremia as a test of treatment. Our study illustrates limitations of the CAR T cells as possible antiviral therapeutics.


2019 ◽  
Vol 14 (1) ◽  
pp. 60-69
Author(s):  
Manxue Fu ◽  
Liling Tang

Background: Chimeric Antigen Receptor (CAR) T cell immunotherapy, as an innovative method for tumor immunotherapy, acquires unprecedented clinical outcomes. Genetic modification not only provides T cells with the antigen-binding function but also endows T cells with better immunological functions both in solid and hematological cancer. However, the CAR T cell therapy is not perfect because of several reasons, such as tumor immune microenvironment, and autologous limiting factors of CAR T cells. Moreover, the safety of CAR T cells should be improved.Objective:Recently many patents and publications have reported the importance of CAR T cell immunotherapy. Based on the patents about CAR T cell immunotherapy, we conclude some methods for designing the CAR which can provide information to readers.Methods:In this review, we collect recent patents and publications, summarize some specific antigens for oncotherapy from patents and enumerate some approaches to conquering immunosuppression and reinforcing the immune response of CAR T cells. We also sum up some strategies for improving the safety of CAR T cell immunotherapy.Results:CAR T cell immunotherapy as a neotype cellular immunotherapy has been proved effective in oncotherapy and authorized by FDA. Improvements in CAR designing enhance functions of CAR T cells.Conclusion:This review, summarizing antigens and approaches to overcome defects of CAR T cell immunotherapy from patents and publications, might contribute to a broad readership.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Chunyi Shen ◽  
Zhen Zhang ◽  
Yi Zhang

Immunotherapy, especially based on chimeric antigen receptor (CAR) T cells, has achieved prominent success in the treatment of hematological malignancies. However, approximately 30-50% of patients will have disease relapse following remission after receiving CD19-targeting CAR-T cells, with failure of maintaining a long-term effect. Mechanisms underlying CAR-T therapy inefficiency consist of loss or modulation of target antigen and CAR-T cell poor persistence which mostly results from T cell exhaustion. The unique features and restoration strategies of exhausted T cells (Tex) have been well described in solid tumors. However, the overview associated with CAR-T cell exhaustion is relatively rare in hematological malignancies. In this review, we summarize the characteristics, cellular, and molecular mechanisms of Tex cells as well as approaches to reverse CAR-T cell exhaustion in hematological malignancies, providing novel strategies for immunotherapies.


2020 ◽  
Vol 94 (10) ◽  
Author(s):  
Matthew T. Ollerton ◽  
Edward A. Berger ◽  
Elizabeth Connick ◽  
Gregory F. Burton

ABSTRACT The major obstacle to a cure for HIV infection is the persistence of replication-competent viral reservoirs during antiretroviral therapy. HIV-specific chimeric antigen receptor (CAR) T cells have been developed to target latently infected CD4+ T cells that express virus either spontaneously or after intentional latency reversal. Whether HIV-specific CAR-T cells can recognize and eliminate the follicular dendritic cell (FDC) reservoir of HIV-bound immune complexes (ICs) is unknown. We created HIV-specific CAR-T cells using human peripheral blood mononuclear cells (PBMCs) and a CAR construct that enables the expression of CD4 (domains 1 and 2) and the carbohydrate recognition domain of mannose binding lectin (MBL) to target native HIV Env (CD4-MBL CAR). We assessed CAR-T cell cytotoxicity using a carboxyfluorescein succinimidyl ester (CFSE) release assay and evaluated CAR-T cell activation through interferon gamma (IFN-γ) production and CD107a membrane accumulation by flow cytometry. CD4-MBL CAR-T cells displayed potent lytic and functional responses to Env-expressing cell lines and HIV-infected CD4+ T cells but were ineffective at targeting FDC bearing HIV-ICs. CD4-MBL CAR-T cells were unresponsive to cell-free HIV or concentrated, immobilized HIV-ICs in cell-free experiments. Blocking intercellular adhesion molecule-1 (ICAM-1) inhibited the cytolytic response of CD4-MBL CAR-T cells to Env-expressing cell lines and HIV-infected CD4+ T cells, suggesting that factors such as adhesion molecules are necessary for the stabilization of the CAR-Env interaction to elicit a cytotoxic response. Thus, CD4-MBL CAR-T cells are unable to eliminate the FDC-associated HIV reservoir, and alternative strategies to eradicate this reservoir must be sought. IMPORTANCE Efforts to cure HIV infection have focused primarily on the elimination of latently infected CD4+ T cells. Few studies have addressed the unique reservoir of infectious HIV that exists on follicular dendritic cells (FDCs), persists in vivo during antiretroviral therapy, and likely contributes to viral rebound upon cessation of antiretroviral therapy. We assessed the efficacy of a novel HIV-specific chimeric antigen receptor (CAR) T cell to target both HIV-infected CD4+ T cells and the FDC reservoir in vitro. Although CAR-T cells eliminated CD4+ T cells that express HIV, they did not respond to or eliminate FDC bound to HIV. These findings reveal a fundamental limitation to CAR-T cell therapy to eradicate HIV.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2604-2604 ◽  
Author(s):  
Stephan A. Grupp ◽  
David L Porter ◽  
David T Teachey ◽  
David M. Barrett ◽  
Anne Chew ◽  
...  

Abstract Abstract 2604 We previously reported on CART19 cells expressing a chimeric antigen receptor (CAR) with intracellular activation and costimulatory domains. Infusion of these cells results in 100 to 100,000× in vivo proliferation, tumor lysis syndrome followed by durable antitumor activity, and prolonged persistence in pts with B cell tumors. Here we report that in vivo proliferation of CART19 cells and potent anti-tumor activity is associated with CRS, leading to hemophagocytic lymphohistiocytosis (HLH), also termed MAS. We propose that MAS/HLH is a unique biomarker that is associated with and may be required for potent anti-tumor activity. Autologous T cells were lentivirally transduced with a CAR composed of anti-CD19 scFv/4-1BB/CD3-zeta, activated/expanded ex-vivo with anti-CD3/anti-CD28 beads, and then infused into ALL or CLL pts with persistent disease after 2–8 prior treatments. CART19 anti ALL activity was also modeled in a xenograft mouse model with high level of human ALL/human T cell engraftment and simultaneous detection of CAR T cells and ALL using 2-color bioluminescent imaging. We describe updated results of 10 pts who received CART19 cells elsewhere at ASH (Porter, et al), including 9 pts with CLL and 1 pediatric pt with relapsed refractory ALL. 6/9 evaluable pts had a CR or PR, including 4 sustained CRs. While there was no acute infusional toxicity, all responding pts also developed CRS. All had high fevers, as well as grade 3 or 4 hypotension/hypoxia. CRS preceded peak blood expression of CART19 cells, and then increased in intensity until the CART19 cell peak (D10–31 after infusion). The ALL pt experienced the most significant toxicity, with grade 4 hypotension and respiratory failure. Steroid therapy on D6 resulted in no improvement. On D9, noting high levels of TNFa and IL-6 (peak increases above baseline: IFNg at 6040x; IL-6 at 988x; IL-2R at 56x, IL-2 at 163× and TNFa at 17x), we administered TNFa and IL-6 antagonists entanercept and toc. This resulted in resolution of fever and hypotension within 12hr and a rapid wean from ventilator support to room air. These interventions had no apparent impact on CART19 cell expansion or efficacy: peak of CAR T cells (2539 CAR+ cells/uL; 77% of CD3 cells by flow) occurred on D11, and D23 bone marrow showed CR with negative MRD, compared to her initial on-study marrow which showed 65% blasts. Although she had no history of CNS ALL, spinal fluid showed detectable CART19 cells (21 lymphs/mcL; 78% CAR+). At 4mo post infusion, this pt remains in CR, with 17 CART19 cells/uL in the blood and 31% CAR+ CD3 cells in the marrow. Clinical assessment of subsequent responding patients shows all had evidence of MAS/HLH including dramatic elevations of ferritin and histologic evidence of HLH. Peak ferritin levels range from 44,000 to 605,000, preceding and continuing with peak T cell proliferation. Other consistent findings include rapid onset hepatosplenomegaly unrelated to disease and moderate DIC. Subsequently, 3 CLL patients have also been treated with toc, also with prompt and striking resolution of high fevers, hypotension and hypoxia. 1 received toc on D10 and achieved a CR accompanied by CART19 expansion. 1 had rapid resolution of CRS following toc administration on day 9 and follow up for response is too short. A 3rd CLL pt received toc on D3 for early fevers and had no CART-19 proliferation and no response. To model the timing of cytokine blockade, xenografts using bioluminescent primary pediatric ALL were established and then treated with extra cells from the clinical manufacture. The CART19 cells proliferated and resulted in prolonged survival. Cytokine blockade prior to T cell infusion with toc and/or etanercept abrogated disease control with less in vivo proliferation of infused CART19 cells, confirming the result seen in the one pt given early toc (D3). The optimal time and threshold to trigger cytokine blockade is currently being tested in these models. CART19 T cells can produce massive in-vivo expansion, long-term persistence, and anti-tumor efficacy, but can also induce significant CRS with features suggestive of MAS/HLH that responds rapidly to cytokine blockade. Given prior to initiation of significant CART19 proliferation, blockade of TNFa and/or IL-6 may interfere with proliferation and effector function, but if given at a point where cell proliferation is underway, toc may ameliorate the symptoms that we have observed correlate with robust clinical responses. Disclosures: Off Label Use: tocilizumab for cell therapy toxicity. Levine:University of Pennsylvania: financial interest due to intellectual property and patents in the field of cell and gene therapy. Conflict of interest is managed in accordance with University of Pennsylvania policy and oversight Patents & Royalties; TxCell: Consultancy, Membership on an entity's Board of Directors or advisory committees. Kalos:University of Pennsylvania: Patents & Royalties. June:Novartis: Research Funding, institution owned patents have been licensed by Novartis, institution owned patents have been licensed by Novartis Patents & Royalties.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 5204-5204 ◽  
Author(s):  
Yongxian Hu ◽  
Jingjing Feng ◽  
Mi Shao ◽  
He Huang

Abstract Background: Autologous T cells modified to express a chimeric antigen receptor (CAR-T) has demonstrated exciting efficacy in treating leukemia and there has been some reports about the toxicities recently. However, the spectrum of capillary-leak syndrome (CLS) associated with CAR-T cell therapy has not been systematically evaluated, which can be a life threatening complication as results of the cytokine release syndrome (CRS). Therefore, as the use of CAR-T therapy continues to expand to broader applications, it is prudent to characterize the profile of CLS to help providers guide safe management. Method: We reviewed all acute lymphoblastic leukemia (ALL) patients who had participated in the clinical trial from our center to receive CAR-T therapy between 2016-2018. Patients analyzed in the study received either CD19 CAR-T cells or CD19 plus CD22 CAR-T cells. The diagnosis of CLS includes edema, acute hypotension and hemoconcentration with hypoproteinemia or hypoalbuminemia. CRS grading was evaluated with Lee's criteria for CRS. Result: 42 ALL patients were included in this study with the mean age of 27(8-52) years old. 11(11/42, 26.2%) patients were diagnosed as CLS and 31 were not. It was observed that CLS was more common in patients who developed severe CRS. Patients with CLS was found to have high rate of hypotension and use of gamma globulin.(Table 1) Top level concentration of serum IL-6 in CLS patients was much higher than that in non-CLS patients (16438.7 vs 3292.7 pg/mL, p=0.0016), which is consistent with the well recognized concept of IL-6 as an indicator of CRS.(Figure 1) It is important to notice that CLS patients had lower levels of serum total protein (TP, 43.7 vs 52.8 g/L, p=0.0005) and serum albumin (ALB, 27.4 vs 33.8 g/L, p=0.0011), while the hemoglobin (HGB) concentration showed no difference, suggesting that TP and ALB might be better indicators for CLS than HGB, although hemoconcentration, hypoproteinemia and hypoalbuminemia are both important in diagnosis.(Figure 2) Moreover, there was no significant difference in age, gender, Ph type of ALL, type of CAR-T cells infused and death ratio.(Table 1) Although CRS has been reported to be related with disease burden before the therapy, our data showed no difference of it between the patients with and without CLS. Conclusion: In conclusion, we have evaluated a basic profile of CLS among CAR-T patients in our center and the study indicates that CLS warrants extra attention for patients who receive CAR-T therapy. Further investigations are required to elucidate best practices for prevention and management of CLS in CAR-T therapy. Disclosures No relevant conflicts of interest to declare.


2017 ◽  
Vol 13 (01) ◽  
pp. 28 ◽  
Author(s):  
Andrew Fesnak ◽  
Una O’Doherty ◽  
◽  

Adoptive transfer of chimeric antigen receptor (CAR) T cells is a powerful targeted immunotherapeutic technique. CAR T cells are manufactured by harvesting mononuclear cells, typically via leukapheresis from a patient’s blood, then activating, modifying the T cells to express a transgene encoding a tumour-specific CAR, and infusing the CAR T cells into the patient. Gene transfer is achieved through the use of retroviral or lentiviral vectors, although non-viral delivery systems are being investigated. This article discusses the challenges associated with each stage of this process. Despite the need for a consistent end product, there is inherent variability in cellular material obtained from critically ill patients who have been exposed to cytotoxic therapy. It is important to carefully select target antigens to maximise effect and minimise toxicity. Various types of CAR T cell toxicity have been documented: this includes “on target, on tumour”, “on target, off tumour” and “off target” toxicity. A growing body of clinical evidence supports the efficacy and safety of CAR T cell therapy; CAR T cells targeting CD19 in B cell leukemias are the best-studied therapy to date. However, providing personalised therapy on a large scale remains challenging; a future aim is to produce a universal “off the shelf” CAR T cell.


2021 ◽  
Vol 288 (1947) ◽  
Author(s):  
Gregory J. Kimmel ◽  
Frederick L. Locke ◽  
Philipp M. Altrock

Chimeric antigen receptor (CAR) T cell therapy is a remarkably effective immunotherapy that relies on in vivo expansion of engineered CAR T cells, after lymphodepletion (LD) by chemotherapy. The quantitative laws underlying this expansion and subsequent tumour eradication remain unknown. We develop a mathematical model of T cell–tumour cell interactions and demonstrate that expansion can be explained by immune reconstitution dynamics after LD and competition among T cells. CAR T cells rapidly grow and engage tumour cells but experience an emerging growth rate disadvantage compared to normal T cells. Since tumour eradication is deterministically unstable in our model, we define cure as a stochastic event, which, even when likely, can occur at variable times. However, we show that variability in timing is largely determined by patient variability. While cure events impacted by these fluctuations occur early and are narrowly distributed, progression events occur late and are more widely distributed in time. We parameterized our model using population-level CAR T cell and tumour data over time and compare our predictions with progression-free survival rates. We find that therapy could be improved by optimizing the tumour-killing rate and the CAR T cells' ability to adapt, as quantified by their carrying capacity. Our tumour extinction model can be leveraged to examine why therapy works in some patients but not others, and to better understand the interplay of deterministic and stochastic effects on outcomes. For example, our model implies that LD before a second CAR T injection is necessary.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiao Han ◽  
Yao Wang ◽  
Jianshu Wei ◽  
Weidong Han

AbstractThe approval of two chimeric antigen receptor-modified T cell types by the US Food and Drug Administration (FDA) for the treatment of hematologic malignancies is a milestone in immunotherapy; however, the application of CAR-T cells has been limited by antigen escape and on-target, off-tumor toxicities. Therefore, it may be a potentially effective strategy to select appropriate targets and to combine multi-antigen-targeted CAR-T cells with “OR”, “AND” and “NOT” Boolean logic gates. We summarize the current limitations of CAR-T cells as well as the efficacy and safety of logic-gated CAR-T cells in antitumor therapy. This review will help to explore more optimized strategies to expand the CAR-T cell therapeutic window.


Author(s):  
Bill X. Wu ◽  
No-Joon Song ◽  
Brian P. Riesenberg ◽  
Zihai Li

Abstract The use of chimeric antigen receptor (CAR) T cell technology as a therapeutic strategy for the treatment blood-born human cancers has delivered outstanding clinical efficacy. However, this treatment modality can also be associated with serious adverse events in the form of cytokine release syndrome. While several avenues are being pursued to limit the off-target effects, it is critically important that any intervention strategy has minimal consequences on long term efficacy. A recent study published in Science Translational Medicine by Dr. Hudecek’s group proved that dasatinib, a tyrosine kinase inhibitor, can serve as an on/off switch for CD19-CAR-T cells in preclinical models by limiting toxicities while maintaining therapeutic efficacy. In this editorial, we discuss the recent strategies for generating safer CAR-T cells, and also important questions surrounding the use of dasatinib for emergency intervention of CAR-T cell mediated cytokine release syndrome.


Sign in / Sign up

Export Citation Format

Share Document