scholarly journals Total absence of the  2(I) chain of collagen type I causes a rare form of Ehlers-Danlos syndrome with hypermobility and propensity to cardiac valvular problems

2005 ◽  
Vol 43 (7) ◽  
pp. e36-e36 ◽  
Author(s):  
F Malfait
2019 ◽  
Vol 39 (7) ◽  
Author(s):  
Zejia Lin ◽  
Jican Zeng ◽  
Xinjia Wang

Abstract Osteogenesis imperfecta (OI) is an inherited connective tissue disorder with a broad clinical spectrum that can overlap with Ehlers–Danlos syndrome (EDS). To date, patients with both OI and EDS have rarely been reported. In the present study, we investigated a family with four members, one healthy individual, one displaying OI only, and two displaying the compound phenotype of OI and EDS, and identified the pathogenic mutations. Whole exome sequencing was applied to the proband and her brother. To verify that the mutations were responsible for the pathogenesis, conventional Sanger sequencing was performed for all members of the family. We identified a known COL1A1 (encoding collagen type I α 1 chain) mutation (c.2010delT, p.Gly671Alafs*95) in all three patients (the proband, her brother, and her mother) in this family, but also a novel heterozygous COL5A1 (encoding collagen type V α 1 chain) mutation (c.5335A>G, p.N1779D) in the region encoding the C-terminal propeptide domain in the proband and her mother, who both had the compound phenotype of OI and EDS. The results of the present study suggested that the proband and her mother presented with the compound OI–EDS phenotype caused by pathogenic mutations in COL5A1 and COL1A1.


2021 ◽  
Vol 12 ◽  
Author(s):  
Maria Gnoli ◽  
Evelise Brizola ◽  
Morena Tremosini ◽  
Elena Pedrini ◽  
Margherita Maioli ◽  
...  

Collagen type I mutations are related to wide phenotypic expressions frequently causing an overlap of clinical manifestations, in particular between Osteogenesis Imperfecta (OI) and Ehlers-Danlos syndrome (EDS). Both disorders present inter- and intra-familial clinical variability and several clinical signs are present in both diseases. Recently, after the observation that some individuals first ascertained by a suspicion of EDS resulted then carriers of pathogenic variants of genes known to primarily cause OI, some authors proposed the term “COL1-related overlap disorder” to describe these cases. In this paper, we report clinical, molecular, and biochemical information about an individual with a diagnosis of EDS with severe joint hypermobility who carries a pathogenic heterozygous variant in COL1A2 gene, and a benign variant in COL1A1 gene. The pathogenic variant, commonly ascribed to OI, as well as the benign variant, has been inherited from the individual's mother, who presented only mild signs of OI and the diagnosis of OI was confirmed only after molecular testing. In addition, we reviewed the literature of similar cases of overlapping syndromes caused by COL1 gene mutations. The reported case and the literature review suggest that the COL1-related overlap disorders (OI, EDS and overlapping syndromes) represent a continuum of clinical phenotypes related to collagen type I mutations. The spectrum of COL1-related clinical manifestations, the pathophysiology and the underlying molecular mechanisms support the adoption of the updated proposed term “COL1-related overlap disorder” to describe the overlapping syndromes.


1991 ◽  
Vol 274 (2) ◽  
pp. 615-617 ◽  
Author(s):  
P Kern ◽  
M Menasche ◽  
L Robert

The biosynthesis of type I, type V and type VI collagens was studied by incubation of calf corneas in vitro with [3H]proline as a marker. Pepsin-solubilized collagen types were isolated by salt fractionation and quantified by SDS/PAGE. Expressed as proportions of the total hydroxyproline solubilized, corneal stroma comprised 75% type I, 8% type V and 17% type VI collagen. The rates of [3H]proline incorporation, linear up to 24 h for each collagen type, were highest for type VI collagen and lowest for type I collagen. From pulse-chase experiments, the calculated apparent half-lives for types I, V and VI collagens were 36 h, 10 h and 6 h respectively.


2021 ◽  
Vol 22 (8) ◽  
pp. 4066
Author(s):  
Patrizia Marchese ◽  
Maria Lombardi ◽  
Maria Elena Mantione ◽  
Domenico Baccellieri ◽  
David Ferrara ◽  
...  

Atherothrombosis exposes vascular components to blood. Currently, new antithrombotic therapies are emerging. Herein we investigated thrombogenesis of human arteries with/without atherosclerosis, and the interaction of coagulation and vascular components, we and explored the anti-thrombogenic efficacy of blockade of the P2X purinoceptor 7 (P2X7). A confocal blood flow videomicroscopy system was performed on cryosections of internal mammary artery (IMA) or carotid plaque (CPL) determining/localizing platelets and fibrin. Blood from healthy donors elicited thrombi over arterial layers. Confocal microscopy associated thrombus with tissue presence of collagen type I, laminin, fibrin(ogen) and tissue factor (TF). The addition of antibodies blocking TF (aTF) or factor XI (aFXI) to blood significantly reduced fibrin deposition, variable platelet aggregation and aTF + aFXI almost abolished thrombus formation, showing synergy between coagulation pathways. A scarce effect of aTF over sub-endothelial regions, more abundant in tissue TF and bundles of laminin and collagen type I than deep intima, may suggest tissue thrombogenicity as molecular structure-related. Consistently with TF-related vascular function and expression of P2X7, the sections from CPL but not IMA tissue cultures pre-treated with the P2X7 antagonist A740003 demonstrated poor thrombogenesis in flow experiments. These data hint to local targeting studies on P2X7 modulation for atherothrombosis prevention/therapy.


Sign in / Sign up

Export Citation Format

Share Document