scholarly journals 0288  Gene-specific DNA methylation as a valuable tool for risk assessment: the case of occupational exposure to different VOC’s in Mexican workers0288  Gene-specific DNA methylation as a valuable tool for risk assessment: the case of occupational exposure to different VOC’s in Mexican workers

2014 ◽  
Vol 71 (Suppl 1) ◽  
pp. A36.2-A36 ◽  
Author(s):  
Octavio Jiménez-Garza ◽  
Andrea Baccarelli ◽  
Hyang-Min Byun ◽  
Giovanni Battista Bartolucci ◽  
Mariella Carrieri
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Xiao-Liang Xing ◽  
Zhi-Yong Yao ◽  
Chaoqun Xing ◽  
Zhi Huang ◽  
Jing Peng ◽  
...  

Abstract Background Colorectal cancer (CRC) is the second most prevalent cancer, as it accounts for approximately 10% of all annually diagnosed cancers. Studies have indicated that DNA methylation is involved in cancer genesis. The purpose of this study was to investigate the relationships among DNA methylation, gene expression and the tumor-immune microenvironment of CRC, and finally, to identify potential key genes related to immune cell infiltration in CRC. Methods In the present study, we used the ChAMP and DESeq2 packages, correlation analyses, and Cox regression analyses to identify immune-related differentially expressed genes (IR-DEGs) that were correlated with aberrant methylation and to construct a risk assessment model. Results Finally, we found that HSPA1A expression and CCRL2 expression were positively and negatively associated with the risk score of CRC, respectively. Patients in the high-risk group were more positively correlated with some types of tumor-infiltrating immune cells, whereas they were negatively correlated with other tumor-infiltrating immune cells. After the patients were regrouped according to the median risk score, we could more effectively distinguish them based on survival outcome, clinicopathological characteristics, specific tumor-immune infiltration status and highly expressed immune-related biomarkers. Conclusion This study suggested that the risk assessment model constructed by pairing immune-related differentially expressed genes correlated with aberrant DNA methylation could predict the outcome of CRC patients and might help to identify those patients who could benefit from antitumor immunotherapy.


2021 ◽  
Author(s):  
Janki Patel ◽  
Martin Brook ◽  
Dario Di Giuseppe ◽  
Valentina Scognamiglio ◽  
Alessandro F. Gualitieri

<p>Erionite is a naturally-occurring zeolite mineral that has emerged as a well-known health hazard over the last few decades. Human exposure to erionite fibers has been unequivocally linked to malignant mesothelioma, a disease also associated with inhalation of airborne asbestos. Indeed, erionite is now classified by the International Agency for Research on Cancer (IARC) as a Group 1 carcinogen (i.e., carcinogenic to humans), but it appears to be more toxic than asbestos. Since volcaniclastic rocks containing erionite are widely present in New Zealand, there is a concern over potential health issues following inhalation of dust particles in particular areas.  Indeed, New Zealand is one of a number of high-income countries with elevated incidence of malignant mesothelioma (2.6 per 100,000), and this has traditionally been thought to be a result of occupational exposure to airborne asbestos fibers. However, recent cases of malignant mesothelioma have emerged without a known link to asbestos exposure, and in 2015, the New Zealand Government acknowledged that erionite was a more potent carcinogen than asbestos. Despite this, there are no established occupational exposure limits for erionite in New Zealand or globally. We are currently using a multi-methodological approach, based upon field investigation, morphological characterization, scanning electron microscopy (SEM)/energy-dispersive spectroscopy (EDS), Transmission Electron Microscopy (TEM), and X-ray powder diffraction (XRPD) to analyse erionite from sites around New Zealand. Preliminary results are reported here, including erionite from Miocene tuff in Auckland. The erionite appears to be erionite-K. From the dimensional analysis, 45.6% of minerals satisfied the requirements for a respirable airborne fibre (length, L ≥ 5 μm, a diameter, w ≤ 3 μm, and L/w value ≥ 3:1). The presence of this mineral is of concern for risk to human health, especially considering the land development in the Auckland region and the quarries and mining-related activities that are operating in the zeolite host rocks elsewhere in New Zealand. Thus, there is a need for a detailed risk assessment in parts of the country indicative of potential hazard. Further assessments of erionite species, quantification of the potentially respirable airborne fibers, and targeted epidemiological surveillance are planned.</p>


2019 ◽  
Vol 28 (15) ◽  
pp. 2477-2485 ◽  
Author(s):  
Diana A van der Plaat ◽  
Judith M Vonk ◽  
Natalie Terzikhan ◽  
Kim de Jong ◽  
Maaike de Vries ◽  
...  

Abstract Many workers are daily exposed to occupational agents like gases/fumes, mineral dust or biological dust, which could induce adverse health effects. Epigenetic mechanisms, such as DNA methylation, have been suggested to play a role. We therefore aimed to identify differentially methylated regions (DMRs) upon occupational exposures in never-smokers and investigated if these DMRs associated with gene expression levels. To determine the effects of occupational exposures independent of smoking, 903 never-smokers of the LifeLines cohort study were included. We performed three genome-wide methylation analyses (Illumina 450 K), one per occupational exposure being gases/fumes, mineral dust and biological dust, using robust linear regression adjusted for appropriate confounders. DMRs were identified using comb-p in Python. Results were validated in the Rotterdam Study (233 never-smokers) and methylation-expression associations were assessed using Biobank-based Integrative Omics Study data (n = 2802). Of the total 21 significant DMRs, 14 DMRs were associated with gases/fumes and 7 with mineral dust. Three of these DMRs were associated with both exposures (RPLP1 and LINC02169 (2×)) and 11 DMRs were located within transcript start sites of gene expression regulating genes. We replicated two DMRs with gases/fumes (VTRNA2-1 and GNAS) and one with mineral dust (CCDC144NL). In addition, nine gases/fumes DMRs and six mineral dust DMRs significantly associated with gene expression levels. Our data suggest that occupational exposures may induce differential methylation of gene expression regulating genes and thereby may induce adverse health effects. Given the millions of workers that are exposed daily to occupational exposures, further studies on this epigenetic mechanism and health outcomes are warranted.


2018 ◽  
Vol 25 (12) ◽  
pp. 11364-11375 ◽  
Author(s):  
Majid Bayatian ◽  
Khosro Ashrafi ◽  
Mansour Rezazadeh Azari ◽  
Mohammad Javad Jafari ◽  
Yadollah Mehrabi

2020 ◽  
Vol 28 (2) ◽  
pp. 1878-1888
Author(s):  
Mahdi Jalali ◽  
Somayeh Rahimi Moghadam ◽  
Mansour Baziar ◽  
Ghasem Hesam ◽  
Zahra Moradpour ◽  
...  

2020 ◽  
Vol 36 (12) ◽  
pp. 960-970
Author(s):  
Mohsen Sadeghi-Yarandi ◽  
Ali Karimi ◽  
Vahid Ahmadi ◽  
Ali Asghar Sajedian ◽  
Ahmad Soltanzadeh ◽  
...  

1,3-Butadiene is classified as carcinogenic to humans by inhalation. This study aimed to assess cancer and non-cancer risk following occupational exposure to 1,3-butadiene. This cross-sectional study was conducted in a petrochemical plant producing acrylonitrile butadiene styrene copolymer in Iran. Occupational exposure to 1,3-butadiene was measured according to the National Institute for Occupational Safety and Health 1024 method. Cancer and non-cancer risk assessment were performed according to the United States Environmental Protection Agency method. The average occupational exposure to 1,3-butadiene during work shifts among all participants was 560.82 ± 811.36 µg m−3. The average lifetime cancer risk (LCR) in the present study was 2.71 × 10−3; 82.2% of all exposed workers were within the definite carcinogenic risk level. Also, the mean non-cancer risk (hazard quotient (HQ)) among all participants was 10.82 ± 14.76. The highest LCR and HQ were observed in the safety and fire-fighting station workers with values of 7.75 × 10−3 and 36.57, respectively. The findings revealed that values of carcinogenic and noncarcinogenic risk in the majority of participants were within the definitive and unacceptable risk levels. Therefore, corrective measures are necessary to protect these workers from non-cancer and cancer risks from 1,3-butadiene exposure.


Sign in / Sign up

Export Citation Format

Share Document