scholarly journals T2 Single nucleotide polymorphisms in the ficolin-2 gene predispose to Pseudomonas aeruginosa infection and disease severity in non-cystic fibrosis bronchiectasis

Thorax ◽  
2011 ◽  
Vol 66 (Suppl 4) ◽  
pp. A1-A2 ◽  
Author(s):  
J. D. Chalmers ◽  
D. C. Kilpatrick ◽  
B. J. McHugh ◽  
M. P. Smith ◽  
J. R. W. Govan ◽  
...  
2004 ◽  
Vol 5 (1) ◽  
Author(s):  
Carol J Blaisdell ◽  
Timothy D Howard ◽  
Augustus Stern ◽  
Penelope Bamford ◽  
Eugene R Bleecker ◽  
...  

2018 ◽  
Vol 31 (10) ◽  
pp. 683-688 ◽  
Author(s):  
Manohar Lal Choudhary ◽  
Kalichamy Alagarasu ◽  
Urmila Chaudhary ◽  
Samruddhi Kawale ◽  
Prachi Malasane ◽  
...  

Life ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 14
Author(s):  
Giovana Bampi ◽  
Anabela Ramalho ◽  
Leonardo Santos ◽  
Johannes Wagner ◽  
Lieven Dupont ◽  
...  

Synonymous single nucleotide polymorphisms (sSNPs), which change a nucleotide, but not the encoded amino acid, are perceived as neutral to protein function and thus, classified as benign. We report a patient who was diagnosed with cystic fibrosis (CF) at an advanced age and presented very mild CF symptoms. The sequencing of the whole cystic fibrosis transmembrane conductance regulator (CFTR) gene locus revealed that the patient lacks known CF-causing mutations. We found a homozygous sSNP (c.1584G>A) at the end of exon 11 in the CFTR gene. Using sensitive molecular methods, we report that the c.1584G>A sSNP causes cognate exon skipping and retention of a sequence from the downstream intron, both of which, however, occur at a relatively low frequency. In addition, we found two other sSNPs (c.2562T>G (p.Thr854=) and c.4389G>A (p.Gln1463=)), for which the patient is also homozygous. These two sSNPs stabilize the CFTR protein expression, compensating, at least in part, for the c.1584G>A-triggered inefficient splicing. Our data highlight the importance of considering sSNPs when assessing the effect(s) of complex CFTR alleles. sSNPs may epistatically modulate mRNA and protein expression levels and consequently influence disease phenotype and progression.


2019 ◽  
Author(s):  
Ana Paula Barbosa do Nascimento ◽  
Fernando Medeiros Filho ◽  
Hério Sousa ◽  
Hermes Senger ◽  
Rodolpho Mattos Albano ◽  
...  

AbstractPseudomonas aeruginosa is one of the most common pathogens related to healthcare-associated infections. The Brazilian isolate, named CCBH4851, is a multidrug-resistant clone belonging to the sequence type 277. The antimicrobial resistance mechanisms of the CCBH4851 strain are associated with the presence of blaSPM-1 gene, encoding a metallo-beta-lactamase, in addition to other exogenously acquired genes. Whole-genome sequencing studies focusing on emerging pathogens are essential to identify physiological key aspects that may lead to the exposure of new targets for therapy. This study was designed to characterize the genome of Pseudomonas aeruginosa CCBH4851 through the detection of genomic features and genome comparison with other Pseudomonas aeruginosa strains. The CCBH4851 closed genome showed features that were consistent with data reported for the specie. However, comparative genomics revealed the absence of genes important for pathogenesis. On the other hand, CCBH4851 genome contained acquired genomic islands that carry additional virulence and antimicrobial resistance-related genes. The presence of single nucleotide polymorphisms in the core genome, mainly those located in resistance-associated genes, suggests that these mutations could influence the multidrug-resistant behavior of CCBH4851. Overall, the characterization of Pseudomonas aeruginosa CCBH4851 complete genome revealed several features that could directly impact the profile of virulence and antibiotic resistance of this pathogen in infectious outbreaks.


2010 ◽  
Vol 16 (6) ◽  
pp. 652-659 ◽  
Author(s):  
Madeleine H Sombekke ◽  
David Arteta ◽  
Mark A van de Wiel ◽  
J Bart A Crusius ◽  
Diego Tejedor ◽  
...  

Multiple sclerosis is a heterogeneous neurological disease with varying degrees of severity. The common hypothesis is that susceptibility to multiple sclerosis and its phenotype are caused by a combination of environmental and genetic factors. The genetic part exerts its effect through several genes, each having modest effects. We evaluated whether disease severity could be predicted by a model based on clinical data and data from a DNA chip. The DNA chip was designed containing several single nucleotide polymorphisms in 44 genes, previously described to be associated with multiple sclerosis. A total of 605 patients with multiple sclerosis were included in this analysis, using gender, onset type and age at onset as clinical covariates. We correlated 80 single nucleotide polymorphisms to the degree of disease severity using the following three outcome measures: linear Multiple Sclerosis Severity Score, dichotomous Multiple Sclerosis Severity Score (using a cut-off point of 2.5) and time to reach Expanded Disability Status Scale score 6. Sixty-nine single nucleotide polymorphisms were included in the analysis. No individual single nucleotide polymorphism showed a significant association; however, a combination of single nucleotide polymorphisms significantly improved the prediction of disease severity in addition to the clinical variables. In all three models the Interleukin 2 gene was included, confirming a previously reported modest effect on disease severity. The highest power was obtained using the dichotomized Multiple Sclerosis Severity Score as outcome. Several single nucleotide polymorphisms showed their added predictive value over the clinical data in the predictive models. These results support our hypothesis that disease severity is determined by clinical variables and genetic influences (through several genes with small effects) in concert.


Sign in / Sign up

Export Citation Format

Share Document