scholarly journals Flavour chemicals, synthetic coolants and pulegone in popular mint-flavoured and menthol-flavoured e-cigarettes

2021 ◽  
pp. tobaccocontrol-2021-056582
Author(s):  
Esther E Omaiye ◽  
Wentai Luo ◽  
Kevin J McWhirter ◽  
James F Pankow ◽  
Prue Talbot

BackgroundThe Food and Drug Administration (FDA) has recently banned flavours from pod-style electronic cigarettes (e-cigarettes), except for menthol and tobacco. JUUL customers have quickly discovered that flavoured disposable e-cigarettes from other manufacturers, such as Puff, are readily available. Our goal was to compare flavour chemicals, synthetic coolants and pulegone in mint-flavoured/menthol-flavoured e-cigarettes from JUUL and Puff, evaluate the cytotoxicity of the coolants and perform a cancer risk assessment for pulegone, which is present in both JUUL pods and disposable Puff products.MethodsIdentification and quantification of chemicals were performed using gas chromatography/mass spectrometry. Cytotoxicity of the coolants was evaluated with BEAS-2B cells using the MTT 3-(4,5-dimethylthiazol-2-yl)−2,5-diphenyltetrazolium bromide assay. The cancer risk of pulegone was calculated using the margin of exposure (MOE).ResultsMenthol was the dominant flavour chemical (>1 mg/mL) in all products from both manufacturers. Minor flavour chemicals (<1 mg/mL) differed in the JUUL and Puff fluids and may produce flavour accents. The concentrations of WS-3 and WS-23 were higher in Puff than in JUUL. WS-23 was cytotoxic in the MTT assay at concentrations 90 times lower than concentrations in Puff fluids. The risk of cancer (MOE<10 000) was greater for mint than for menthol products and greater for Puff than for JUUL.ConclusionsSwitching from flavoured JUUL to Puff e-cigarettes may expose users to increased harm due to the higher levels of WS-23 and pulegone in Puff products. Cancer risk may be reduced in e-cigarettes by using pure menthol rather than mint oils to produce minty-flavoured e-cigarette products.

Author(s):  
Hekap Kim ◽  
Jiyeon Tcha ◽  
Man-yong Shim ◽  
Sungjin Jung

This study aimed to investigate the airborne release of N-nitrosodimethylamine (NDMA) as a result of the dry heat cooking of some meats using charcoal grilling and pan broiling methods. Three types of meat, beef sirloin, pork belly, and duck, were chosen and cooked in a temporary building using the above methods. Air samples were collected in Thermosorb-N cartridges, which were qualitatively and quantitatively analyzed for NDMA using ultra-high performance liquid chromatography&ndash;mass spectrometry and high-performance liquid chromatography&ndash;fluorescence detection, respectively. Overall, the charcoal grilling method showed higher average NDMA concentrations than the pan broiling method for all types of meat. The highest average concentration was observed for charcoal-grilled beef sirloin (410 ng/m3) followed by pork belly, suggesting that meat protein content and cooking duration are important determinants of NDMA formation. Cancer risk assessment showed that the charcoal grilling of such meats can pose an additional cancer risk for restaurant customers.


Dose-Response ◽  
2018 ◽  
Vol 16 (4) ◽  
pp. 155932581880640 ◽  
Author(s):  
Kenny Crump

Before around 1960, assessment of risk from exposure to toxic substances, including risk of cancer, was generally implemented using the NOAEL-safety factor approach that essentially assumed that an exposure threshold existed and exposures below the threshold carried no risk. In the 1970s there came a realization that cancer could develop from a mutation in a single cell and consequently it was unlikely that a threshold existed for substances that could cause such mutations, and that risk could increase linearly with exposure. During this time the Environmental Protection Agency (EPA) was formed and charged with protecting the public from a perceived high risk of environmental cancer. Faced with this difficult task, EPA decided to assess cancer risk by fitting a statistical model to dose-response cancer data and extrapolating to low dose using the fitted model. After some early experimentation EPA selected the Linearized Multistage Model for this fitting, which predicted risk increased linearly with exposure at low exposures. This approach led to an increased emphasis on statistical issues in risk assessment. Today, cancer risk assessment guidelines allow for different approaches depending upon the understanding of a substance's mode of action. However, a review of EPA's experience with current guidelines indicates that most cancer risk assessments still follow procedures similar to those initiated more than 40 years ago.


2019 ◽  
Vol 43 (8) ◽  
pp. 592-599 ◽  
Author(s):  
Rose I Krakowiak ◽  
Justin L Poklis ◽  
Michelle R Peace

Abstract The use of electronic cigarettes (e-cigs) has expanded from a nicotine delivery system to a general drug delivery system. The internet is rife with websites, blogs and forums informing users how to modify e-cigs to deliver illicit drugs while maintaining optimal drug delivery of their device. The goal of this study was to qualitatively identify the presence of methamphetamine in the aerosol produced by an e-cig and to quantitatively assess the effect voltage on the concentration of aerosolized methamphetamine. A KangerTech AeroTank electronic cigarette containing a 30, 60 or 120 mg/mL of methamphetamine in 50:50 propylene glycol: vegetable glycerin formulation was used to produce the aerosol. To qualitatively identify aerosolized methamphetamine, the aerosol was generated at 4.3 V, trapped in a simple glass trapping system, extracted using solid-phase microextraction (SPME), and analyzed by high-resolution Direct Analysis in Real Time AccuTOF™ Mass Spectrometry (DART-MS). To assess the effect of voltage on the concentration of aerosolized methamphetamine, the aerosol was generated at 3.9, 4.3 and 4.7 V, trapped and quantified using gas chromatography mass spectrometry (GC/MS). SPME-DART-MS and SPME-GC-MS demonstrated the aerosolization of methamphetamine. The concentration of aerosolized methamphetamine at 3.9, 4.3 and 4.7 V was not statistically different at 800 ± 600 ng/mL, 800 ± 600 ng/mL and 1,000 ± 800 ng/mL, respectively. The characterization of the vapors produced from e-liquids containing methamphetamine provides an understanding of the dose delivery dynamics of e-cigarettes.


2021 ◽  
Vol 117 (2) ◽  
pp. 1
Author(s):  
Helena BAŠA ČESNIK

A new analytical method for determining environmental pesticide residues in pollen was introduced and validated. The extraction was conducted using acetonitrile, the clean-up using Supelclean Ultra 2400 solid phase extraction cartridges, which contain Grapsphere, anion exchanger, C18 and zirconia-based sorbent, and the determination was conducted using gas chromatography coupled with mass spectrometry. The method was applied in practice. A total of 49 active substances (pesticides) were sought in 30 bee pollen samples gathered from Slovenian beekeepers from all 12 statistical regions of Slovenia. The fungicide azoxystrobin was the only active substance found and was found only in one sample with a concentration of &lt; 0.05 mg kg-1. The active substances sought were not detected in 96.7 % of the samples analysed. The risk assessment revealed that the analysed pollen samples do not represent an unacceptable risk for consumers. The results were compared with those from the literature and the outcome was that bee pollen from Slovenia contained a lower number of active substances at mainly lower contents as compared pollen from some other European countries.


2021 ◽  
Vol 9 ◽  
Author(s):  
Alaina K. Holt ◽  
Justin L. Poklis ◽  
Michelle R. Peace

E-cigarette or vaping use-associated lung injury (EVALI) was identified with the incidents of a multi-state outbreak of acute lung injuries associated with the use of electronic cigarettes (e-cigs) and attributed to vitamin E acetate in off-market cannabis-based e-liquids. Aside from EVALI, hypersecretion of mucus, irritated nasal passages, and watery, red eyes have been defined as complaints associated with vaping standard nicotine-based e-liquids. The chemical composition of e-liquids varies between manufacturers and robust oversight of ingredients is lacking. Manufacturers use chemicals deemed “generally recognized as safe” (GRAS) by the FDA, a designation for chemicals used in foodstuffs to be ingested. Most “GRAS” chemicals are associated with at least one Global Harmonization System (GHS) warning class, ranging from irritant to toxic. Untargeted chemical analysis is critical to evaluate e-liquid products to determine chemical composition; equally important is the quantitation of components to help elucidate the potential harms from exceeding recommended exposure limits. Untargeted screening of e-liquids was accomplished using gas chromatography-mass spectrometry (GC-MS) and Direct Analysis in Real Time-AccuTOF™ mass spectrometry (DART-ToF-MS) and has identified 350 chemical constituents from 241 products analyzed. Nicotine, caffeine, menthol, and vitamin E were confirmed and quantitated by GC-MS, ethanol was confirmed and quantitated by headspace-gas chromatography-dual flame ionization detection (HS-GC-FID), and olivetol and cannabinoids were confirmed and quantitated by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Maximum identified concentrations of nicotine, caffeine, menthol, vitamin E, ethanol, olivetol, Δ9-tetrahydrocannabinol, and cannabidiol were 56.4, 26.9, 4.28, 307.9, 217.2, 399.6, 497.7, and 332.6 mg/ml, respectively. Evaluation of untargeted analysis and quantitation of unlabeled chemical components of e-liquids is essential to improving etiology of acute lung injury and less severe impacts of vaping, both short-term and long-term. The historical documentation of unlabeled ingredients can provide some insight for a retrospective analysis of health consequences and inform policy discussions.


Sign in / Sign up

Export Citation Format

Share Document