Increased cardiac output elicits higher V̇O2max in response to self-paced exercise

2015 ◽  
Vol 40 (3) ◽  
pp. 223-229 ◽  
Author(s):  
Todd Anthony Astorino ◽  
David William McMillan ◽  
Ross Montgomery Edmunds ◽  
Eduardo Sanchez

Recently, a self-paced protocol demonstrated higher maximal oxygen uptake versus the traditional ramp protocol. The primary aim of the current study was to further explore potential differences in maximal oxygen uptake between the ramp and self-paced protocols using simultaneous measurement of cardiac output. Active men and women of various fitness levels (N = 30, mean age = 26.0 ± 5.0 years) completed 3 graded exercise tests separated by a minimum of 48 h. Participants initially completed progressive ramp exercise to exhaustion to determine maximal oxygen uptake followed by a verification test to confirm maximal oxygen uptake attainment. Over the next 2 sessions, they performed a self-paced and an additional ramp protocol. During exercise, gas exchange data were obtained using indirect calorimetry, and thoracic impedance was utilized to estimate hemodynamic function (stroke volume and cardiac output). One-way ANOVA with repeated measures was used to determine differences in maximal oxygen uptake and cardiac output between ramp and self-paced testing. Results demonstrated lower (p < 0.001) maximal oxygen uptake via the ramp (47.2 ± 10.2 mL·kg–1·min–1) versus the self-paced (50.2 ± 9.6 mL·kg–1·min–1) protocol, with no interaction (p = 0.06) seen for fitness level. Maximal heart rate and cardiac output (p = 0.02) were higher in the self-paced protocol versus ramp exercise. In conclusion, data show that the traditional ramp protocol may underestimate maximal oxygen uptake compared with a newly developed self-paced protocol, with a greater cardiac output potentially responsible for this outcome.

1981 ◽  
Vol 59 (11) ◽  
pp. 1146-1154 ◽  
Author(s):  
S. G. Thomas ◽  
D. A. Cunningham ◽  
M. J. Plyley ◽  
D. R. Boughner ◽  
R. A. Cook

The role of central and peripheral adaptations in the response to endurance training was examined. Changes in cardiac structure and function, oxygen extraction, and muscle enzyme activities following one-leg training were studied.Eleven subjects (eight females, three males) trained on a cycle ergometer 4 weeks with one leg (leg 1), then 4 weeks with the second leg (leg 2). Cardiovascular responses to exercise with both legs and each leg separately were evaluated at entry (T1), after 4 weeks of training (T2), and after a second 4 weeks of training (T3). Peak oxygen uptake ([Formula: see text] peak) during exercise with leg 1 (T1 to T2 increased 19.8% (P < 0.05) and during exercise with leg 2 (T2 to T3 increased 16.9% (P < 0.05). Maximal oxygen uptake with both legs increased 7.9% from T1 to T2 and 9.4% from T2 to T3 (P < 0.05). During exercise at 60% of [Formula: see text] peak, cardiac output [Formula: see text] was increased significantly only when the trained leg was exercised. [Formula: see text] increased 12.2% for leg 1 between T1 and T2 and 13.0% for leg 2 between T2 and T3 (P < 0.05). M-mode echocardiographic assessment of left ventricular internal diameter at diastole and peak velocity of circumferential fibre shortening at rest or during supine cycle ergometer exercise at T1 and T3 revealed no training induced changes in cardiac dimensions or function. Enzyme analysis of muscle biopsy samples from the vastus lateralis (At T1, T2, T3) revealed no consistent pattern of change in aerobic (malate dehydrogenase and 3-hydroxyacyl-CoA dehydrogenase) or anaerobic (phosphofructokinase, lactate dehydroginase, and creatine kinase) enzyme activities. Increases in cardiac output and maximal oxygen uptake which result from short duration endurance training can be achieved, therefore, without measurable central cardiac adaptation. The absence of echocardio-graphically determined changes in cardiac dimensions and contractility and the absence of an increase in cardiac output during exercise with the nontrained leg following training of the contralateral limb support this conclusion.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Trine Karlsen ◽  
Ingeborg Megård Leinan ◽  
Fredrik Hjulstad Bækkerud ◽  
Kari Margrethe Lundgren ◽  
Atefe Tari ◽  
...  

Background. To discuss the cardiovascular and pulmonary physiology and common risk factors of an 80-year-old man with a world record maximal oxygen uptake of 50 mL·kg−1·min−1.Methods. Case report.Results. His maximal oxygen uptake of 3.31 L·min−1, maximal heart rate of 175 beats·min−1, and maximal oxygen pulse of 19 mL·beats−1are high. He is lean (66.6 kg) and muscular (49% skeletal muscle mass). His echo parameters of mitral flow (left ventricular filling,E= 82 cm·s−1andE/A= 1.2) were normal for 40- to 60-year-old men. Systolic and diastolic function increased adequately during exercise, with no increase in left ventricular filling pressure. He has excellent pulmonary function (FVC = 4.31 L, FEV1 = 3.41, FEV1/FVC = 0.79, and DLCO = 12.0 Si1) and normal FMD and blood volumes (5.8 L). He has a high level of daily activity (10,900 steps·day−1and 2:51 hours·day−1of physical activity) and a lifelong history of physical activity.Conclusion. The man is in excellent cardiopulmonary fitness and is highly physically active. His cardiac and pulmonary functions are above expectations for his age, and his VO2maxis comparable to that of an inactive 25-year-old and of a normal, active 35-year-old Norwegian man.


Author(s):  
Damir Zubac ◽  
Vladimir Ivančev ◽  
Zoran Valić ◽  
Boštjan Šimunič

We studied the effects of age on different physiological parameters, including those derived from (i) maximal cardiopulmonary exercise testing (CPET), (ii) moderate-intensity step transitions, and (iii) tensiomyography (TMG)-derived variables in moderately active women. Twenty-eight women (age, 19 to 53 years), completed 3 laboratory visits, including baseline data collection, TMG assessment, maximal oxygen uptake test via CPET, and a step-transition test from 20 W to a moderate-intensity cycling power output (PO), corresponding to oxygen uptake at 90% gas exchange threshold. During the step transitions, breath-by-breath pulmonary oxygen uptake, near infrared spectroscopy derived muscle deoxygenation (ΔHHb), and beat-by-beat cardiovascular response were continuously monitored. There were no differences observed between the young and middle-aged women in their maximal oxygen uptake and peak PO, while the maximal heart rate (HR) was 12 bpm lower in middle-aged compared with young (p = 0.016) women. Also, no differences were observed between the age groups in τ pulmonary oxygen uptake, ΔHHb, and τHR during on-transients. The first regression model showed that age did not attenuate the maximal CPET capacity in the studied population (p = 0.638), while in the second model a faster τ pulmonary oxygen uptake, combined with shorter TMG-derived contraction time (Tc) of the vastus lateralis (VL), were associated with a higher maximal oxygen uptake (∼30% of explained variance, p = 0.039). In conclusion, long lasting exercise involvement protects against a maximal oxygen uptake and τpulmonary oxygen uptake deterioration in moderately active women. Novelty: Faster τ pulmonary oxygen uptake and shorter Tc of the VL explain 33% of the variance in superior maximal oxygen uptake attainment. No differences between age groups were found in τ pulmonary oxygen uptake, τΔHHb, and τHR during on-transients.


2011 ◽  
Vol 111 (2) ◽  
pp. 530-536 ◽  
Author(s):  
Antonio Crisafulli ◽  
Flavio Tangianu ◽  
Filippo Tocco ◽  
Alberto Concu ◽  
Ombretta Mameli ◽  
...  

Brief episodes of nonlethal ischemia, commonly known as “ischemic preconditioning” (IP), are protective against cell injury induced by infarction. Moreover, muscle IP has been found capable of improving exercise performance. The aim of the study was the comparison of standard exercise performances carried out in normal conditions with those carried out following IP, achieved by brief muscle ischemia at rest (RIP) and after exercise (EIP). Seventeen physically active, healthy male subjects performed three incremental, randomly assigned maximal exercise tests on a cycle ergometer up to exhaustion. One was the reference (REF) test, whereas the others were performed after the RIP and EIP sessions. Total exercise time (TET), total work (TW), and maximal power output (Wmax), oxygen uptake (VO2max), and pulmonary ventilation (VEmax) were assessed. Furthermore, impedance cardiography was used to measure maximal heart rate (HRmax), stroke volume (SVmax), and cardiac output (COmax). A subgroup of volunteers ( n = 10) performed all-out tests to assess their anaerobic capacity. We found that both RIP and EIP protocols increased in a similar fashion TET, TW, Wmax, VEmax, and HRmax with respect to the REF test. In particular, Wmax increased by ∼4% in both preconditioning procedures. However, preconditioning sessions failed to increase traditionally measured variables such as VO2max, SVmax, COmax, and anaerobic capacity. It was concluded that muscle IP improves performance without any difference between RIP and EIP procedures. The mechanism of this effect could be related to changes in fatigue perception.


1996 ◽  
Vol 82 (2) ◽  
pp. 419-424 ◽  
Author(s):  
Antonios K. Travlos ◽  
Daniel Q. Marisi

This study was conducted to investigate the influence of fitness level and gradually increased amounts of exercise on individuals' ratings of perceived exertion (RPE). 20 men served as paid subjects. They were divided into groups of high (>56 ml/kg/min.) and low fitness (<46 ml/kg/min.) according to their maximal oxygen uptake (VO2 max). Participants were required to pedal on a cycle ergometer at a progressively increased workload (every 10 min.) corresponding to 40, 50, 60, 70, and 80% of individual VO2 max values. Heart rates, RPE, and core temperatures were recorded every 5th minute after the initiation of exercising at a specific workload. Analysis indicated that, when controlling for VO2 max values, elevations of heart rate and core temperature were not affected by fitness. However, highly fit individuals perceived themselves under less exertion than did the group low in fitness. Correlations showed that, taking into consideration fitness, there is a stronger relationship between RPE and heart rate and RPE and core temperature for the highly fit individuals than for the less fit.


2018 ◽  
Vol 39 (03) ◽  
pp. 198-203 ◽  
Author(s):  
Don Keiller ◽  
Dan Gordon

AbstractThis study investigates heart rate (HR), in 11 young adults (22.4±3.21yr), at V̇O2max, to ascertain whether measured maximal heart rate (HRmax), as determined by a plateau in HR (HRplat), can reliably confirm V̇O2max. V̇O2max and HRplat were determined, using the parameters of a V̇O2≤50 ml•min−1 and a ∆HR≤2b•min−1, respectively, over the final 60 s of sampling. V̇O2 was also independently determined using a verification phase protocol. A HRplat was achieved by 91% of participants (∆HR=1.3±1b•min−1) and critically the time at which HRmax was reached coincided with that at which V̇O2max was achieved. Moreover RER and ΔRER criteria were reached significantly earlier (p<0.05) than V̇O2max, whilst age-related heart rate maximums (HRage), were not achieved by many participants. The results suggest that a HRplat ≤2 b•min−1 is a more accurate method, within the group tested, to determine whether a ‘true’ V̇O2max has been achieved, than other secondary criteria and potentially avoids the requirement for an additional verification phase.


Sports ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 75
Author(s):  
Per-Øyvind Torvik ◽  
Roland van den Tillaar ◽  
Gaute Iversen

The aim of this study was to investigate if the order of submaximal lactate threshold and maximal oxygen uptake testing would influence test outcomes. Twelve well-trained male cross-country skiers (mean age 19.6 years) performed two test sessions within a week in a within-subjects repeated measures with cross-over design study. A maximal oxygen uptake test (VO2max) followed by a lactate threshold (LT) test and vice versa, were performed. The test data included VO2, blood lactate (La-b), heart rate (HR), performance speed, Borg scale (RPE) at all stages and lactate accumulation throughout the whole test protocol including the breaks. No significant effect of testing order was found for: VO2max (74.23 vs. 73.91 mL∙min−1∙kg−1), maximal HR (190.7 vs. 189.9 bpm) and speed at LT during uphill running. Three out of four common definitions of LT resulted in the same La-b at the last two steps, 11 and 12 km/h respectively, in the two protocols. It is worth noting that VO2, HR and La-b were higher in the first two stages of the LT test when VO2max was tested first in the protocol. Well-trained cross-country skiers conclusively attained a similar VO2max and LT in both protocols, and the two tests did not seem to influence each other in terms of the degree of exhaustion that occurs in a single VO2max or an incremental LT test. However, when using a curvilinear function to define the LT, it is important to know that the VO2max test can influence levels of VO2, HR and La-b at the first two stages of the LT test.


2006 ◽  
Vol 97 (5) ◽  
pp. 535-541 ◽  
Author(s):  
Roger G. Eston ◽  
James A. Faulkner ◽  
Elizabeth A. Mason ◽  
Gaynor Parfitt

Sign in / Sign up

Export Citation Format

Share Document