scholarly journals Collectively, we need to accelerate Arctic specimen sampling

2017 ◽  
Vol 3 (3) ◽  
pp. 515-524
Author(s):  
Kevin Winker ◽  
Jack Withrow

Natural history collections are not often thought of as observatories, but they are increasingly being used as such to observe biological systems and changes within them. Objects and the data associated with them are archived for present and future research. These specimen collections provide many diverse scientific benefits, helping us understand not only individual species or populations but also the environments in which they live(d). Despite these benefits, the specimen resource is inadequate to the tasks being asked of it — there are many gaps, taxonomically and in time and space. We examine and highlight some of these gaps using bird collections as an example. Given the speed of climate change in the Arctic, we need to collectively work to fill these gaps so we can develop and wield the science that will make us better stewards of Arctic environments.

2012 ◽  
Vol 37 (2) ◽  
pp. 206-226 ◽  
Author(s):  
Cherith A. Moses

Rock coasts are widespread in the tropics and exhibit particular morphologies that may be specific to their tropical, micro-tidal location. Notches are particularly well developed, often linked to onshore cliffs and fronted by subhorizontal platforms. Through a review of previously published data across the tropics, average cliff face erosion rates are calculated as 2.15 ± 2.62 mm a−1, intertidal erosion rates 3.03 ± 7.50 mm a−1 and subtidal erosion rates 0.96 ± 0.44 mm a−1. Intertidal erosion rates are variable within and across latitudinal ranges: within 10°N and S of the equator average rates are 1.42 ± 1.22 mm a−1; between latitudes of 10°and 20°, 0.88 ± 1.16 mm a−1 and between latitudes of 20°and 30°, 2.04 ± 2.57 mm a−1. A consideration of temporal variations in intertidal erosion rates provides insights into the potential impacts of climate change on the erosion dynamics of rock coasts in the tropics. This paper highlights some of the interactions over time and space between process and measurement that continue to limit our understanding of, and ability to model, the erosion dynamics of tropical rock coasts. It concludes by identifying potentially fruitful areas for future research.


2020 ◽  
Vol 11 ◽  
Author(s):  
Lisa W. von Friesen ◽  
Lasse Riemann

The Arctic Ocean is the smallest ocean on Earth, yet estimated to play a substantial role as a global carbon sink. As climate change is rapidly changing fundamental components of the Arctic, it is of local and global importance to understand and predict consequences for its carbon dynamics. Primary production in the Arctic Ocean is often nitrogen-limited, and this is predicted to increase in some regions. It is therefore of critical interest that biological nitrogen fixation, a process where some bacteria and archaea termed diazotrophs convert nitrogen gas to bioavailable ammonia, has now been detected in the Arctic Ocean. Several studies report diverse and active diazotrophs on various temporal and spatial scales across the Arctic Ocean. Their ecology and biogeochemical impact remain poorly known, and nitrogen fixation is so far absent from models of primary production in the Arctic Ocean. The composition of the diazotroph community appears distinct from other oceans – challenging paradigms of function and regulation of nitrogen fixation. There is evidence of both symbiotic cyanobacterial nitrogen fixation and heterotrophic diazotrophy, but large regions are not yet sampled, and the sparse quantitative data hamper conclusive insights. Hence, it remains to be determined to what extent nitrogen fixation represents a hitherto overlooked source of new nitrogen to consider when predicting future productivity of the Arctic Ocean. Here, we discuss current knowledge on diazotroph distribution, composition, and activity in pelagic and sea ice-associated environments of the Arctic Ocean. Based on this, we identify gaps and outline pertinent research questions in the context of a climate change-influenced Arctic Ocean – with the aim of guiding and encouraging future research on nitrogen fixation in this region.


2020 ◽  
Author(s):  
Vaughn Shirey ◽  
Michael W. Belitz ◽  
Vijay Barve ◽  
Robert Guralnick

AbstractAggregate biodiversity data from museum specimens and community observations have promise for macroscale ecological analyses. Despite this, many groups are under-sampled, and sampling is not homogeneous across space. Here we used butterflies, the best documented group of insects, to examine inventory completeness across North America. We separated digitally accessible butterfly records into those from natural history collections and burgeoning community science observations to determine if these data sources have differential spatio-taxonomic biases. When we combined all data, we found startling under-sampling in regions with the most dramatic trajectories of climate change and across biomes. We also found support for the hypothesis that community science observations are filling more gaps in sampling but are more biased towards areas with the highest human footprint. Finally, we found that both types of occurrences have familial-level taxonomic completeness biases, in contrast to the hypothesis of less taxonomic bias in natural history collections data. These results suggest that higher inventory completeness, driven by rapid growth of community science observations, is partially offset by higher spatio-taxonomic biases. We use the findings here to provide recommendations on how to alleviate some of these gaps in the context of prioritizing global change research.


2021 ◽  
Vol 3 ◽  
Author(s):  
Laura Eerkes-Medrano ◽  
Henry P. Huntington

Scientific attention to climate change in the Arctic has spurred extensive research, including many studies of Indigenous knowledge and the effects of climate change on Indigenous peoples. These topics have been reported in many scientific papers, books, and in the IPCC's 2019 Special Report on the Ocean and Cryosphere in a Changing Climate (SROCC), as well as attracting considerable interest in the popular media. We assembled a set of peer-reviewed publications concerning Arctic Indigenous peoples and climate change for the SROCC, to which we have added additional papers discovered through a subsequent literature search. A closer look at the 76 papers in our sample reveals additional emphases on economics, culture, health and mental health, policy and governance, and other topics. While these emphases reflect to some degree the perspectives of the Indigenous peoples involved in the studies, they are also subject to bias from the interests and abilities of the researchers involved, compounded by a lack of comparative research. Our review shows first that climate change does not occur in isolation or even as the primary threat to Indigenous well-being in the Arctic, but the lack of systematic investigation hampers any effort to assess the role of other factors in a comprehensive manner; and second that the common and perhaps prevailing narrative that climate change spells inevitable doom for Arctic Indigenous peoples is contrary to their own narratives of response and resilience. We suggest that there should be a systematic effort in partnership with Indigenous peoples to identify thematic and regional gaps in coverage, supported by targeted funding to fill such gaps. Such an effort may also require recruiting additional researchers with the necessary expertise and providing opportunities for inter-regional information sharing by Arctic Indigenous peoples. As researchers who are visitors to the Arctic, we do not claim that our findings are representative of Indigenous perspectives, only that a more accurate and comprehensive picture of Arctic Indigenous peoples' knowledge of and experiences with climate change is needed. Our analysis also reflects some of the SROCC knowledge gaps and the conclusions provide suggestions for future research.


Author(s):  
Marcus De Almeida ◽  
Ângelo Pinto ◽  
Alcimar Carvalho

Natural history collections (NHC) are guardians of biodiversity (Lane 1996) and essential to understand the natural world and its evolutionary processes. They hold samples of morphological and genetic heritages of living and extinct biotas, helping to reconstruct the timeline of life over the centuries (Gardner 2014). Primary data from specimens in NHC are crucial elements for research in many areas of biological sciences, considered the “bricks” of systematics and therefore one of the pillars for evolutionary studies (Troudet 2018). For this reason, studies carried out in NHC are essential for the development of the scientific knowledge and are pivotal for the scientific-technological progress of a nation (Camargo 2015). The digitization and availability of primary data on biodiversity from NHC represents a inexpensive, practical and secure means of exchanging information, allowing collaboration between institutions and researchers. In this sense, initiatives such as the Sistema de Informação sobre a Biodiversidade Brasileira (SiBBr), a country-level branch of the Global Biodiversity Information Facility (GBIF) platform, aim to encourage and establish ways for the informatization of biological collections and their type specimens. Known for housing one of the largest and oldest collections of insects in the world focused on Neotropical fauna, the Entomological Collection of the Museu Nacional of Federal University of Rio de Janeiro (MNRJ) had more than 3,000 primary types and approximately 12,005,000 specimens, of which about 96% were lost in the tragic fire occurred at the institution on September 2, 2018. The SiBBr project was active in that collection from 2016 to 2019 and enabled the digitization and preservation of data from the type material of many insect orders, including the charismatic dragonflies (order Odonata). Due to the end of the agreement between SiBBr and the Museu Nacional, most of the obtained primary data are pending full curation and, therefore, are not yet available to the public and researchers. The MNRJ housed the biggest and most important collection of dragonflies among all Central and South American institutions. It assembled most of the physical records of neotropical dragonfly fauna gathered over the last 80 years, many of which are of undescribed taxa. Unfortunately, almost all material was permanently lost. This study aims to gather, analyze and publicize primary data of the type material of dragonflies housed in the MNRJ, ensuring the preservation of its history, as well as providing data on the taxonomy and diversity of this marvelous group of insects. A total of 11 families, 50 genera and 131 species were recorded, belonging to the suborders Anisoptera and Zygoptera with distributional records widespread in South America. The MNRJ housed 105 holotypes of dragonflies' nomina representing 11.7% of the richness of the Brazilian Odonata fauna (901 spp.), a country with the highest number of species of the biosphere. The impact of the loss of this collection to studies of these insects is unprecedented, since some enigmatic and monotypic genera such as Brasiliogomphus, Fluminagrion and Roppaneura lost 100% of their type series, while others most diverse such as Lauromacromia, Oxyagrion and Neocordulia lost 50%, 35% and 31% of their holotypes. Therefore, due to the registration and preservation of primary biodiversity data, this work reiterates the importance of curating and digitizing biological scientific collections. Furthermore, it shows extreme relevance for preserving information on existing biodiversity permanently and providing support for future research. Digitization and interconnecting digital extended specimen data proves to be one of the main and most effective ways to protect NHC heritage and their primary data against catastrophic events.


2021 ◽  
Author(s):  
Rebecca J Wilson ◽  
Alexandre F de Siqueira ◽  
Stephen J Brooks ◽  
Benjamin W Price ◽  
Lea M Simon ◽  
...  

Natural history collections (NHCs) are invaluable resources for understanding biotic response to global change. Museums around the world are currently imaging specimens, capturing specimen data, and making them freely available online. In parallel to the digitisation effort, there have been great advancements in computer vision (CV): the computer trained automated recognition/detection, and measurement of features in digital images. Applying CV to digitised NHCs has the potential to greatly accelerate the use of NHCs for biotic response to global change research. In this paper, we apply CV to a very large, digitised collection to test hypotheses in an established area of biotic response to climate change research: temperature-size responses. We develop a CV pipeline (Mothra) and apply it to the NHM iCollections of British butterflies (>180,000 specimens). Mothra automatically detects the specimen in the image, sets the scale, measures wing features (e.g., forewing length), determines the orientation of the specimen (pinned ventrally or dorsally), and identifies the sex. We pair these measurements and meta-data with temperature records to test how adult size varies with temperature during the immature stages of species and to assess patterns of sexual-size dimorphism across species and families. Mothra accurately measures the forewing lengths of butterfly specimens and compared to manual baseline measurements, Mothra accurately determines sex and forewing lengths of butterfly specimens. Females are the larger sex in most species and an increase in adult body size with warm monthly temperatures during the late larval stages is the most common temperature size response. These results confirm suspected patterns and support hypotheses based on recent studies using a smaller dataset of manually measured specimens. We show that CV can be a powerful tool to efficiently and accurately extract phenotypic data from a very large collection of digital NHCs. In the future, CV will become widely applied to digital NHC collections to advance ecological and evolutionary research and to accelerate the use of NHCs for biotic response to global change research.


2021 ◽  
Author(s):  
Audrey Woo ◽  
Jeffrey McKenzie ◽  
Sean Carey

<p>Groundwater flow and exfiltration (discharge) in Arctic and Subarctic mountain regimes is poorly understood yet plays an important role in areas underlain by continuous and discontinuous permafrost. Permafrost, ground with a perennial temperature below 0°C, acts as an impermeable barrier to groundwater flow and influences hydrogeologic connectivity and storage. The Arctic is warming at twice the global average rate, leading to rapid permafrost thaw with unclear consequences for groundwater systems. In this study, we develop a numerical groundwater model of the Granger Basin, Yukon, to further our understanding of the influence of permafrost and thaw on groundwater flow in basins impacted by climate change.</p><p>Granger Basin is a 7.6 km<sup>2</sup>  headwater catchment located within the Wolf Creek Research Basin, Yukon, Canada. It is representative of a subarctic-continental mountain environment with already observable climate change impacts. To date, there has been limited hydrogeology monitoring or numerical modeling at this site. To investigate cryohydrogeologic processes within the basin, we integrate existing field data, including 30 years of hydrometeorological records and geophysical data into a three-dimensional numerical model with saturated-unsaturated groundwater flow. We use the SUTRA-ice numerical model that couples groundwater flow and energy transport with dynamic freeze-thaw processes. The model incorporates both time-dependent thermal and hydrological surface boundary conditions and is used parametrically to understand the generation of groundwater baseflow in this setting. We will present initial results that will evaluate the impact of different hydrogeologic properties on the generation of groundwater streamflow in Wolf Creek, how permafrost in transition affects the groundwater system, and provide the framework for future research directions.</p>


2012 ◽  
Vol 26 (4) ◽  
pp. 407-420 ◽  
Author(s):  
Oran R. Young

That the Arctic is undergoing transformative changes driven in large part by external forces is no longer news. The high latitudes of the Northern Hemisphere, which are not themselves significant sources of anthropogenic emissions of greenhouse gases (GHGs) or short-lived climate pollutants (such as black carbon soot), are experiencing effects attributable to climate change that are equal to or greater than those occurring in any of the planet's other large regions. Prominent among these effects are rising surface temperatures, a deepening of the active layer of the permafrost, the collapse of sea ice, increases in the intensity of coastal storm surges made possible by the retreat of sea ice, the accelerated melting of the Greenland ice sheet, and the acidification of marine systems. The deposition of black carbon in the high north alone—almost 60 percent of which is thought to originate in Europe—appears to account for half or more of the increase in temperature occurring in the Arctic. Positive feedback processes, such as lowered albedo (that is, the capacity of Earth's surface to reflect incoming solar radiation back into space) following the melting of ice at sea and snow on land, have the effect of magnifying the impact of these external forces. Nowhere is the challenge of adapting to the impacts of climate change more urgent than in Arctic coastal communities confronted with the need to relocate to avoid physical destruction. And nowhere are the threats to individual species (for example, the polar bear) and whole ecosystems more severe than they are in the Arctic, where biophysical changes are outstripping the capacity of plants and animals to adapt to altered conditions.


2019 ◽  
Vol 3 (2) ◽  
pp. 221-231 ◽  
Author(s):  
Rebecca Millington ◽  
Peter M. Cox ◽  
Jonathan R. Moore ◽  
Gabriel Yvon-Durocher

Abstract We are in a period of relatively rapid climate change. This poses challenges for individual species and threatens the ecosystem services that humanity relies upon. Temperature is a key stressor. In a warming climate, individual organisms may be able to shift their thermal optima through phenotypic plasticity. However, such plasticity is unlikely to be sufficient over the coming centuries. Resilience to warming will also depend on how fast the distribution of traits that define a species can adapt through other methods, in particular through redistribution of the abundance of variants within the population and through genetic evolution. In this paper, we use a simple theoretical ‘trait diffusion’ model to explore how the resilience of a given species to climate change depends on the initial trait diversity (biodiversity), the trait diffusion rate (mutation rate), and the lifetime of the organism. We estimate theoretical dangerous rates of continuous global warming that would exceed the ability of a species to adapt through trait diffusion, and therefore lead to a collapse in the overall productivity of the species. As the rate of adaptation through intraspecies competition and genetic evolution decreases with species lifetime, we find critical rates of change that also depend fundamentally on lifetime. Dangerous rates of warming vary from 1°C per lifetime (at low trait diffusion rate) to 8°C per lifetime (at high trait diffusion rate). We conclude that rapid climate change is liable to favour short-lived organisms (e.g. microbes) rather than longer-lived organisms (e.g. trees).


Sign in / Sign up

Export Citation Format

Share Document