scholarly journals Long-term warming manipulations reveal complex decomposition responses across different tundra vegetation types

2021 ◽  
Author(s):  
Katrín Björnsdóttir ◽  
Isabel C Barrio ◽  
Ingibjörg Svala Jónsdóttir

In a rapidly warming tundra, ecosystems will undergo major environmental changes which are predicted to significantly alter below–ground processes, such as decomposition of plant litter. Making use of International Tundra Experiment sites (ITEX), established approximately two decades ago, we examined long–term impacts of warming on decomposition. We used the Tea Bag Index (TBI) methodology to measure the annual mass loss (%) of two tea types as a proxy for potential decomposition rates, across five tundra vegetation types. Direct effects of warming were assessed by comparing mass loss within and outside warming manipulations. Indirect effects of warming, such as those caused by warming–induced changes in plant community composition, were assessed through the relationship between mass loss of tea and biotic and abiotic local conditions. We found positive effects of warming on decomposition, although the responses varied between vegetation and tea types. Interestingly, we found support for the indirect influence of long–term warming on decomposition through warming–induced changes in the composition of plant communities. Our findings demonstrate the complexity in decomposition responses to warming across different vegetation types and highlight the importance of long–term legacies of warming in decomposition responses across the Arctic.

2016 ◽  
Vol 2 (3) ◽  
pp. 127-141 ◽  
Author(s):  
Steven D. Mamet ◽  
Nathan Young ◽  
Kwok P. Chun ◽  
Jill F. Johnstone

Nondestructive estimations of plant community characteristics are essential to vegetation monitoring programs. However, there is no universally accepted method for this purpose in the Arctic, partly because not all programs share the same logistical constraints and monitoring goals. Our aim was to determine the most efficient and effective method for long-term monitoring of alpine tundra vegetation. To achieve this, we established 12 vegetation-monitoring plots on a south-facing slope in the alpine tundra of southern Yukon Territory, Canada. Four observers assessed these plots for vascular plant species abundance employing three methods: visual cover (VC) and subplot frequency (SF) estimation and modified point-intercept (PI) (includes rare species present but not intersected by a pin). SF performed best in terms of time required per plot and sensitivity to variations in species richness. All methods were similarly poor at estimating relative abundance for rare species, but PI and VC were substantially better at high abundances. Differences among methods were larger than among observers. Our results suggest that SF is best when the monitoring focus is on rare species or species richness across extensive areas. However, when the focus is on monitoring changes in relative abundance of common species, VC or PI should be preferred.


2019 ◽  
Author(s):  
Tomasz Wawrzyniak ◽  
Marzena Osuch

Abstract. The article presents the climatological dataset from the Polish Polar Station Hornsund located in the SW part of Spitsbergen - the biggest island of the Svalbard Archipelago. Due to a general lack of long-term in situ measurements and observations, the high Arctic remains one of the largest climate‐data deficient regions on the Earth, so described series is of unique value. To draw conclusions on the climatic changes in the Arctic, it is necessary to analyse the long-term series of continuous, systematic, in situ observations from different locations and comparing the corresponding data, rather than rely on the climatic simulations only. In recent decades, rapid environmental changes occurring in the Atlantic sector of the Arctic are reflected in the data series collected by the operational monitoring conducted at the Hornsund Station. We demonstrate the results of the 40 years-long series of observations. Climatological mean values or totals are given, and we also examined the variability of meteorological variables at monthly and annual scale using the modified Mann-Kendall test for trend and Sen’s method. The relevant daily, monthly, and annual data are provided on the PANGAEA repository (https://doi.org/10.1594/PANGAEA.909042, Wawrzyniak and Osuch, 2019).


1998 ◽  
Vol 76 (7) ◽  
pp. 1295-1304 ◽  
Author(s):  
David M Bryant ◽  
Elisabeth A Holland ◽  
Timothy R Seastedt ◽  
Marilyn D Walker

Decomposition of plant litter regulates nutrient cycling and transfers of fixed carbon to soil organic matter pools in terrestrial ecosystems. Climate, as well as factors of intrinsic litter chemistry, often govern the rate of decomposition and thus the dynamics of these processes. Initial concentrations of nitrogen and recalcitrant carbon compounds in plant litter are good predictors of litter decomposition rates in many systems. The effect of exogenous nitrogen availability on decay rates, however, is not well defined. Microclimate factors vary widely within alpine tundra sites, potentially affecting litter decay rates at the local scale. A controlled factorial experiment was performed to assess the influence of landscape position and exogenous nitrogen additions on decomposition of surface foliage and buried root litter in an alpine tundra in the Front Range of the Rocky Mountains in Colorado, U.S.A. Litter bags were placed in three communities representing a gradient of soil moisture and temperature. Ammonium nitrate was applied once every 30 days at a rate of 20 g N·m-2 during the 3-month growing season. Data, as part of the Long-Term Inter-site Decomposition Experiment Team project, were analyzed to ascertain the effects of intrinsic nitrogen and carbon fraction chemistry on litter decay in alpine systems. Soil moisture was found to be the primary controlling factor in surface litter mass loss. Root litter did not show significant mass loss following first growing season. Nitrogen additions had no effect on nitrogen retention, or decomposition, of surface or buried root litter compared with controls. The acid-insoluble carbon fraction was a good predictor of mass loss in surface litters, showing a strong negative correlation. Curiously, N concentration appeared to retard root decomposition, although degrees of freedom limit the confidence of this observation. Given the slow rate of decay and N loss from root litter, root biomass appears to be a long-term reservoir for C and N in the alpine tundra.Key words: litter decomposition, alpine tundra, nitrogen deposition, LIDET, Niwot Ridge.


2017 ◽  
Vol 5 (1) ◽  
pp. 28-68 ◽  
Author(s):  
Nathalie Dubois ◽  
Émilie Saulnier-Talbot ◽  
Keely Mills ◽  
Peter Gell ◽  
Rick Battarbee ◽  
...  

Lake sediments constitute natural archives of past environmental changes. Historically, research has focused mainly on generating regional climate records, but records of human impacts caused by land use and exploitation of freshwater resources are now attracting scientific and management interests. Long-term environmental records are useful to establish ecosystem reference conditions, enabling comparisons with current environments and potentially allowing future trajectories to be more tightly constrained. Here we review the timing and onset of human disturbance in and around inland water ecosystems as revealed through sedimentary archives from around the world. Palaeolimnology provides access to a wealth of information reflecting early human activities and their corresponding aquatic ecological shifts. First human impacts on aquatic systems and their watersheds are highly variable in time and space. Landscape disturbance often constitutes the first anthropogenic signal in palaeolimnological records. While the effects of humans at the landscape level are relatively easily demonstrated, the earliest signals of human-induced changes in the structure and functioning of aquatic ecosystems need very careful investigation using multiple proxies. Additional studies will improve our understanding of linkages between human settlements, their exploitation of land and water resources, and the downstream effects on continental waters.


2021 ◽  
Author(s):  
Xaver von Beckerath ◽  
Gita Benadi ◽  
Olivier Gilg ◽  
Benoît Sittler ◽  
Glenn Yannic ◽  
...  

AbstractCollapsing lemming cycles have been observed across the Arctic, presumably due to global warming creating less favorable winter conditions. The quality of wintering habitats, such as depth of snow cover, plays a key role in sustaining population dynamics of arctic lemmings. However, few studies so far investigated habitat use during the arctic winter. Here, we used a unique long-term time series to test whether lemmings are associated with topographical and vegetational habitat features for their winter refugi. We examined yearly numbers and distribution of 22,769 winter nests of the collared lemming Dicrostonyx groenlandicus from an ongoing long-term research on Traill Island, Northeast Greenland, collected between 1989 and 2019, and correlated this information with data on dominant vegetation types, elevation and slope. We specifically asked if lemming nests were more frequent at sites with preferred food plants such as Dryas octopetala x integrifolia and at sites with increased snow cover. We found that the number of lemming nests was highest in areas with a high proportion of Dryas heath, but also correlated with other vegetation types which suggest some flexibility in resource use of wintering lemmings. Conversely, they showed a distinct preference for sloped terrain, probably as it enhances the formation of deep snow drifts which increases the insulative characteristics of the snowpack and protection from predators. With global warming, prime lemming winter habitats may become scarce through alteration of snow physical properties, potentially resulting in negative consequence for the whole community of terrestrial vertebrates.


ARCTIC ◽  
2018 ◽  
Vol 71 (3) ◽  
Author(s):  
Rosemary A. Dwight ◽  
David M. Cairns

The Arctic tundra is undergoing many environmental changes in addition to increasing temperatures: these changes include permafrost degradation and increased shrubification. Disturbances related to infrastructure can also lead to similar environmental changes. The Trans-Alaska Pipeline System (TAPS) is an example of infrastructure that has made a major imprint on the Alaskan landscape. This paper assesses changes in shrub presence along the northernmost 255 km of the TAPS. We used historical satellite imagery from before construction of the TAPS in 1974 and contemporary satellite imagery from 2010 to 2016 to examine changes in shrub presence over time. We found a 51.8% increase in shrub presence adjacent to the pipeline compared to 2.6% in control areas. Additionally, shrub presence has increased significantly more in areas where the pipeline is buried, indicating that the disturbances linked to pipeline burial have likely created favorable conditions for shrub colonization. These results are important for predicting potential responses of tundra vegetation to disturbance, which will be crucial to forecasting the future of Arctic tundra vegetation.


2020 ◽  
Author(s):  
Laura Marques ◽  
Ensheng Weng ◽  
Benjamin Stocker

<p>Global environmental changes are rapidly altering the functioning and structure of terrestrial ecosystems.Particularly, rising CO<sub>2</sub> atmospheric concentrations have been reported to increase photosynthesis by increasing carbon assimilation and water-use efficiency. This leaf-level CO<sub>2 </sub>fertilization effect may lead to an increase in the biomass stock in forest stands. However, previous studies argued that an enhanced tree growth rate is associated with a reduction in the longevity of trees, thus reducing the ability of forest biomass to act as carbon sinks over long timescales. In addition, faster growth may lead to an acceleration of self-thinning whereby tree density in the stand is reduced due to progressive mutual shading as tree crowns expand and a resulting increase in shaded individuals’ mortality. Nevertheless, previous results relied on empirical relationships between tree growth rates and longevity, without considering any positive effects of elevated CO​<sub>2 </sub>on individual tree’s carbon balance. Individual-based forest datasets such as tree ring width data and forests inventories have been widely used to monitor long-term changes in forest demography. Yet, the mechanistic underlying these processes remains poorly understood and challenges persist in upscaling from individual measurements to higher level of organization.</p><p>Here, we use a vegetation demography model (LM3-PPA) which simulates vegetation dynamics and biogeochemical processes by explicitly scaling from leaf up to ecosystem level by resolving leaf-level physiology, growth, and height-structured competition for light, using the perfect plasticity approximation (PPA). Using this simulation model, we investigate the links between individual trees’ carbon balance under rising CO<sub>2 </sub>levels, their longevity under alternative mortality parametrizations, and the implications for forest dynamics and self-thinning rates. Inventory data from long-term forest reserves is used to assess empirical support for these simulated links. Specifically, we test the hypothesis of <em>faster growth-earlier death</em> in order to assess forests’ capacity to store carbon under environmental changes. This provides key mechanistic insights to reveal whether increased CO<sub>2 </sub>fertilization on leaf-level photosynthesis positively affects tree’s C balance and thereby reduces the mortality under competition for light in the canopy.</p><p> </p>


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 953-953 ◽  
Author(s):  
Charles Bolan ◽  
Jeremiah Ronquillo ◽  
Yu Ying Yau ◽  
Robert Wesley ◽  
Stacey Cecco ◽  
...  

Abstract -Background: Citrate-induced changes in biochemical markers of calcium balance and bone metabolism have been described for at least 24 hours after plateletpheresis. However, the long-term effect of frequent apheresis on BMD and calcium balance has not been determined. Methods: Volunteer platelet donors (PD) and financially-compensated lymphocyte donors (LD), each with > 50 donations over 10 yrs, were compared with volunteer whole blood (WB) donor controls. All subjects underwent BMD testing by dual energy x-ray absorptiometry (Delphi Advanced Instrument, Hologic, MA). Laboratory evaluations were performed at baseline, and immediately and at 1, 4, and 14 days after apheresis. The minimum interapheresis donation period established by institutional policy was 4 wks in PD, and 3 weeks in LD, thus additional BMD assessments were performed in community platelet donors (APD), each with > 100 donations over 10 yrs, conducted at a minimum interapheresis interval of 2 weeks. Results: Seventy–six PD, 53 LD, 118 WB, and 21 APD donors were evaluated. PD were older (57 vs 50 yo), weighed less (80 vs 88 kg), and were more likely to be female (41% vs 26%) and Caucasian (99 vs 64%) than LD. WB had intermediate demographic values (53 yo, 85 kg, 40% female, 77% Caucasian). APD had similar age (58 yo), wt (88 kg), and race (100% Caucasian) but were 95% male and had a mean of 206 lifetime donations versus 88 for PD and 80 for LD. Compared to PD, LD underwent larger procedures (7 vs 5 liters) at lower citrate infusion rates (1.3 vs 1.6 mg/kg/min). PD also exhibited attenuated post-apheresis changes in ionized Ca (iCa, 0.97 vs 0.93 mmole/L) and intact PTH (iPTH, 87 vs 106 pg/mL), and had more marked post-apheresis changes in markers of bone breakdown (c-telopeptides; 73 vs 43% increase) and bone remodeling (osteocalcin, 50 vs 25% increase). LD, but not PD, had persistent 10 to 20% increases in iPTH levels on days 1, 4, and 14 after apheresis, while both LD and PD demonstrated smaller, but statistically significant increases in iCa, total Ca, and phosphorus on day 14 after apheresis. PD had higher mean BMD than the gender, race, and age adjusted reference standards at all sites tested, and had higher BMD values at the femoral neck, hip and radius than WB controls matched for race, gender, menopausal status, age (± 5 yrs) and weight (± 10 kg). A similar, but less pronounced pattern was observed in LD, with mean BMD values significantly higher than reference values or matched WB controls only at the femoral neck. The frequency of osteopenia (36, 15, and 49%) and osteoporosis (4, 8 and 13%) in PD, LD and WB donors, respectively, tended to be lower in the frequent apheresis donors. BMD in APD donors did not differ significantly from WB controls and was significantly lower than PD at the femoral neck and hip. Conclusion: Apheresis induces citrate-mediated biochemical effects consistent with an acute period of bone resorption followed by a more gradual period of recovery. Repetitive, frequent plateletpheresis in PD subjects was associated with positive effects on bone density, as has been described with the use of PTH as a pharmacologic therapy for low BMD in other clinical settings. The net effects on calcium balance, bone metabolism, and BMD may be further impacted by alterations in the frequency and intensity of citrate administration.


The impacts of environmental change on Arctic terrestrial ecosystems are complex and difficult to predict because of the many interactions which exist within ecosystems and between several concurrently changing environmental variables. However, some general predictions can be made. (i) In the sub-Arctic, subtle shifts in plant community composition with occasional losses of plant species are more likely than immigration of exotic species. In the high Arctic, colonization of bare ground can proceed and there are likely to be shifts in ecotypes. Major shifts in vegetation zones, such as the advance of the boreal forest, are likely to be slow and species specific responses will result in different assemblages of species in plant communities in the longer term. All changes in community structure, apart from species removal by direct extreme weather conditions (e.g. drought) will be slow because of the slow growth, low levels of fecundity and slow migration rates of plant species over large latitudinal ranges. (ii) Mobile mammals and birds can probably adjust to changes in the distribution of their food plants or prey in the Arctic, but vertebrate and invertebrate herbivores may face problems with changes in the quality of their food plants. Non-migratory animals could be severely affected by altered winter snow conditions which affect availability of food and shelter. (iii) Increases in primary production are uncertain and depend mainly upon the responses of soil microbial decomposer activity to changes in soil temperature, moisture and plant litter quality. Assumptions that climate warming will lead to warmer soils and increased nutrient availability to sustain higher productivity are uncertain as greater biomass may lead to reduced soil temperatures through insulation effects and increased nutrients released may be immobilized by soil microorganisms. (iv) Changes in environmental conditions are themselves often uncertain. There is particular doubt about changes in precipitation, growing season length, cloudiness and UV-B radiation levels while such environmental changes are likely to vary in magnitude and direction between different regions of the Arctic. (v) The large populations and circumpolar distributions typical of Arctic biota lead to a strong buffering of changes in biodiversity. Perhaps the greatest threats to Arctic biota will be imposed by the degradation of permafrost which may lead to either waterlogging or drought depending upon precipitation regimes.


2021 ◽  
Author(s):  
Gesche Blume-Werry ◽  
Vanessa Di Maurizio ◽  
Ilka Beil ◽  
Signe Lett ◽  
Sarah Schwieger ◽  
...  

Abstract Purpose The standardized ‘Tea Bag Index’ enables comparisons of litter decomposition rates, a key component of carbon cycling, across ecosystems. However, tea ‘litter’ may leach more than other plant litter, skewing comparisons of decomposition rates between sites with differing moisture conditions. Therefore, some researchers leach tea bags before field incubation. This decreases comparability between studies, and it is unclear if this modification is necessary. Methods We submerged green and rooibos tea bags in water, and measured their leaching losses over time (2 min – 72 h). We also compared leaching of tea to leaf and root litter from other plant species, and finally, compared mass loss of pre-leached and standard tea bags in a fully factorial incubation experiment differing in soil moisture (wet and dry) and soil types (sand and peat). Results Both green and rooibos tea leached strongly, levelling-off at about 40% and 20% mass loss, respectively. Mass loss from leaching was highest in green tea followed by leaves of other plants, then rooibos tea, and finally roots of other plants. When incubated for 4 weeks, both teas showed lower mass loss when they had been pre-leached compared to standard tea bags. However, these differences between standard and pre-leached tea bags were similar in moist vs. dry soils, both in peat and in sand. Conclusions Thus, despite large leaching losses, we conclude that leaching tea bags before field or lab incubation is not necessary to compare decomposition rates between systems, ranging from as much as 5% to 25% soil moisture.


Sign in / Sign up

Export Citation Format

Share Document