Canopy-scale relationships between foliar nitrogen and albedo are not observed in leaf reflectance and transmittance within temperate deciduous tree species

Botany ◽  
2011 ◽  
Vol 89 (7) ◽  
pp. 491-497 ◽  
Author(s):  
Megan K. Bartlett ◽  
Scott V. Ollinger ◽  
David Y. Hollinger ◽  
Haley F. Wicklein ◽  
Andrew D. Richardson

Strong positive correlations between the maximum rate of canopy photosynthesis, canopy-averaged foliar nitrogen concentration, and canopy albedo have been shown in previous studies. While leaf-level relationships between photosynthetic capacity and foliar nitrogen are well documented, it is not clear whether leaf-level relationships between solar-weighted reflectance and nitrogen underlie the canopy-scale patterns. Using an integrating sphere, we measured the reflectance and transmittance (350–2500 nm) of both individual leaves and multileaf stacks. Samples were collected from 12 broadleaf species at the Harvard Forest in central Massachusetts, USA. Across all species, foliar nitrogen (both mass-based nitrogen concentration and area-based nitrogen content) and leaf mass / area ratio were negatively, rather than positively, correlated with solar-weighted reflectance and transmittance in ultraviolet–visible and near-infrared wavelength bands (350–700 nm and 700–2500 nm, respectively). Leaf-level anatomy and biochemistry, therefore, do not appear to drive the canopy-level association between increasing foliar nitrogen content and increasing canopy albedo. This suggests that interactions between leaf optical properties and structural canopy-scale traits that correlate with nitrogen content (perhaps some combination of crown shape, leaf area index, leaf angular distribution, or other structural characteristics of the canopy), may instead underlie the previously observed relationship between nitrogen and canopy-level shortwave albedo.

2013 ◽  
Vol 43 (1) ◽  
pp. 18-27 ◽  
Author(s):  
Franklin B. Sullivan ◽  
Scott V. Ollinger ◽  
Mary E. Martin ◽  
Mark J. Ducey ◽  
Lucie C. Lepine ◽  
...  

Several recent studies have shown that the mass-based concentration of nitrogen in foliage (%N) is positively correlated with canopy near-infrared reflectance (NIRr) and midsummer shortwave albedo across North American forests. Understanding the mechanisms behind this relationship would aid in interpretation of remote sensing imagery and improve our ability to predict changes in reflectance under future environmental conditions. The purpose of this study was to investigate the extent to which foliar nitrogen at leaf and canopy scales covary with leaf- and canopy-scale structural traits that are known to influence NIR scattering and reflectance. To accomplish this, we compared leaf and canopy traits with reflectance spectra at 17 mixed temperate forest stands. We found significant positive associations among %N and NIRr at both the leaf and canopy scale. At the canopy scale, both %N and NIRr were correlated with a number of structural traits as well as with the proportional abundance of deciduous and evergreen foliage. Identifying specific causal factors for observed reflectance patterns was complicated by interrelations among multiple traits across scales. Among simple metrics of canopy structure, we saw no relationship between NIRr and leaf area index, but we observed a strong, inverse relationship with the number of leaves per unit canopy volume.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 869
Author(s):  
Solomon B. Ghezehei ◽  
Alexander L. Ewald ◽  
Dennis W. Hazel ◽  
Ronald S. Zalesny ◽  
Elizabeth Guthrie Nichols

We evaluated the productivity and profitability of four highly productive poplars including Populus deltoides × P. deltoides (DD ‘140’ and ‘356’), P. deltoides × P. maximowiczii (DM ‘230’), and P. trichocarpa × P. deltoides (TD ‘185’) under two densities (2500 and 5000 trees ha−1), and three fertilization treatments (0, 113, 225 kg nitrogen ha−1) at three sandy coastal sites varying in soil quality. Green stem biomass (GSB) was estimated from the sixth-year stem diameter. Leaf-rust (Melampsora castagne) and beetle damage (by Chrysomela scripta Fabricius), the leaf area index (LAI) and foliar nitrogen, were measured in year two. At all sites, DD and DM had higher survival (>93%) than TD (62–83%). DD produced greater GSB (92.5–219.1 Mg ha−1) than DM (54–60.2 Mg ha−1) and TD (16.5–48.9 Mg ha−1), and this was greater under the higher density (85.9–148.6 Mg ha−1 vs. 55.9–124.9 Mg ha−1). Fertilization significantly increased GSB on fertile soil but not marginal soils; a higher rate did not significantly enhance GSB. Leaf rust was higher for fertile soil (82%) than marginal soils (20–22%), and TD ‘185’ (51% vs. others 34%). C. scripta damage was higher for the higher density (+42%) than lower density, and TD ‘185’ (50% vs. others >38%). LAI was higher on fertile soil (1.85 m2 m−2) than marginal soils (1.35–1.64 m2 m−2), and under the lower density (1.67 m2 m−2 vs. 1.56 m2 m−2). The high GSB producer DD ‘356’ had the lowest LAI (1.39 m2 m−2 vs. 1.80 m2 m−2). Foliar nitrogen varied among genomic groups (DD ‘140’ 1.95%; TD ‘185’ 1.80%). Our plots were unprofitable at a 27 USD Mg−1 delivered price; the biggest profitability barriers were the high costs of higher density establishment and weed control. The best-case treatment combinations of DD (‘140’, ‘356’) would be cost-effective if the price increased by 50% (USD 37.54 Mg−1) or rotations were 12 years (fertile-soil) and longer (marginal soils). The requirement for cost-effectiveness of poplars includes stringent and site-specific weed control which are more important than fertilizer applications.


Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1042
Author(s):  
Silvia Grassi ◽  
Olusola Samuel Jolayemi ◽  
Valentina Giovenzana ◽  
Alessio Tugnolo ◽  
Giacomo Squeo ◽  
...  

Poorly emphasized aspects for a sustainable olive oil system are chemical analysis replacement and quality design of the final product. In this context, near infrared spectroscopy (NIRS) can play a pivotal role. Thus, this study aims at comparing performances of different NIRS systems for the prediction of moisture, oil content, soluble solids, total phenolic content, and antioxidant activity of intact olive drupes. The results obtained by a Fourier transform (FT)-NIR spectrometer, equipped with both an integrating sphere and a fiber optic probe, and a Vis/NIR handheld device are discussed. Almost all the partial least squares regression models were encouraging in predicting the quality parameters (0.64 < R2pred < 0.84), with small and comparable biases (p > 0.05). The pair-wise comparison between the standard deviations demonstrated that the FT-NIR models were always similar except for moisture (p < 0.05), whereas a slightly lower performance of the Vis/NIR models was assessed. Summarizing, while on-line or in-line applications of the FT-NIR optical probe should be promoted in oil mills in order to quickly classify the drupes for a better quality design of the olive oil, the portable and cheaper Vis/NIR device could be useful for preliminary quality evaluation of olive drupes directly in the field.


Land ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 505
Author(s):  
Gregoriy Kaplan ◽  
Offer Rozenstein

Satellite remote sensing is a useful tool for estimating crop variables, particularly Leaf Area Index (LAI), which plays a pivotal role in monitoring crop development. The goal of this study was to identify the optimal Sentinel-2 bands for LAI estimation and to derive Vegetation Indices (VI) that are well correlated with LAI. Linear regression models between time series of Sentinel-2 imagery and field-measured LAI showed that Sentinel-2 Band-8A—Narrow Near InfraRed (NIR) is more accurate for LAI estimation than the traditionally used Band-8 (NIR). Band-5 (Red edge-1) showed the lowest performance out of all red edge bands in tomato and cotton. A novel finding was that Band 9 (Water vapor) showed a very high correlation with LAI. Bands 1, 2, 3, 4, 5, 11, and 12 were saturated at LAI ≈ 3 in cotton and tomato. Bands 6, 7, 8, 8A, and 9 were not saturated at high LAI values in cotton and tomato. The tomato, cotton, and wheat LAI estimation performance of ReNDVI (R2 = 0.79, 0.98, 0.83, respectively) and two new VIs (WEVI (Water vapor red Edge Vegetation Index) (R2 = 0.81, 0.96, 0.71, respectively) and WNEVI (Water vapor narrow NIR red Edge Vegetation index) (R2 = 0.79, 0.98, 0.79, respectively)) were higher than the LAI estimation performance of the commonly used NDVI (R2 = 0.66, 0.83, 0.05, respectively) and other common VIs tested in this study. Consequently, reNDVI, WEVI, and WNEVI can facilitate more accurate agricultural monitoring than traditional VIs.


1992 ◽  
Vol 22 (8) ◽  
pp. 1089-1093 ◽  
Author(s):  
R. Trowbridge ◽  
F.B. Holl

An overdense lodgepole pine (Pinuscontorta Dougl. ex Loud.) stand was knocked down and the site was prepared by broadcast burn, windrow burn, or mechanical forest floor removal. Inoculated alsike clover (Trifoliumhybridum L.) was seeded at 0, 10, 20, and 30 kg/ha for the three different site preparation treatments to determine the effects of (i) site preparation on infection and effectiveness of the clover–Rhizobium symbiosis and clover percent cover and (ii) the clover–Rhizobium N2-fixing symbiosis on survival, early growth, and foliar nitrogen concentration of lodgepole pine seedlings. The N2-fixing symbiosis established well in all treatments. Clover percent cover increased with increasing rate of seeding, although by relatively few percent in the clover seeded plots. Broadcast burning, windrow burning, and mechanical forest floor removal did not affect the establishment of the N2-fixing symbiosis or clover percent cover. Lodgepole pine survival was not affected by the seeding treatments in any year, nor were height measurements during the first three growing seasons. Seedling height was slightly less in clover-seeded plots compared with controls in the fourth growing season. Lodgepole pine seedlings on clover-seeded plots had decreased diameter growth compared with controls during the first three growing seasons, but incremental diameter growth no longer showed this effect by the fourth growing season. Needle mass (g/100 needles) was less in clover-seeded plots at the end of the second growing season, but this effect was reversed by the fourth growing season, when both needle mass and foliar nitrogen concentration in lodgepole pine foliage were greater in clover-seeded plots.


Sign in / Sign up

Export Citation Format

Share Document