Inhibition of gas exchange in bean leaves by NO2

1975 ◽  
Vol 53 (5) ◽  
pp. 466-474 ◽  
Author(s):  
H. S. Srivastava ◽  
P. A. Jolliffe ◽  
V. C. Runeckles

An open gas-flow system was used to examine the effects of the air pollutant NO2 on gas exchange by primary leaves of bean (Phaseolus vulgaris L.). Apparent photosynthesis and dark respiration were both inhibited by NO2 concentrations between 1.0 and 7.0 ppm. The degree of inhibition was increased by increasing NO2 concentration and increasing exposure time. Leaf susceptibility to NO2 varied during leaf growth. NO2 was most inhibitory at the ages when maximum rates of apparent photosynthesis or respiration were observed in the NO2-free controls (11 or 12, or 8 days after sowing, respectively). The rate of absorption of NO2 by leaves increased in direct proportion with the NO2 concentration and declined with increasing exposure time. The NO2 uptake rate in the dark was about half of its rate during illumination because of greater stomatal resistance to NO2 absorption in the dark. Transpiration rate was less affected by NO2 than was photosynthesis or respiration. Accordingly, it is suggested that the principal effects of NO2 on leaf gas exchange are exerted in the leaf mesophyll and are not on the stomata.

HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 649e-649
Author(s):  
E.D. Leonardos ◽  
M.J. Tsujita ◽  
B. Grodzinski ◽  
T.J. Blom

Leaf and whole plant gas exchange (net photosynthesis Pn, dark respiration Dr, transpiration Tr, and resistance R) of `Jacqueline' Alstroemeria, grown in pots inside a greenhouse, were measured under lab conditions using an openflow and a semi-closed system respectively. Temperature responses of apical fully expanded leaves, on flowering and non-flowering shoots, showed an optimum range for net photosynthesis (Pn) from 15 to 20 °C. Above 25 °C Pn dropped considerably as temperature increased. Leaf transpiration rates over the same range of temperature showed a similar decrease, indicating that low leaf Pn rates at higher temperatures were due in part to increased stomatal resistance. Whole plant photosynthetic response to temperature was similar to that of leaf gas exchange. The optimum temperature range for whole plant Pn was from 12 to 17 °C. These results show that moderately low temperatures are essential for carbon assimilation and efficient water use in Alstroemeria. Temperature interactions with other environmental factors will also be presented in models describing Pn rates as a function of irradiance, CO2 concentration, and temperature.


1996 ◽  
Vol 121 (2) ◽  
pp. 243-248 ◽  
Author(s):  
Thomas E. Marler ◽  
Yasmina Zozor

Leaf gas exchange, chlorophyll fluorescence, water relations, and mineral nutrient relations responses of Annona squamosa seedlings to mild salinity were studied in sand culture in five experiments during 1990, 1991, and 1993. Trees were irrigated with a complete nutrient solution (control) or with this solution amended to 3 or 6 dS·m-1 with sea salt. Inhibition of net CO2 assimilation, stomatal conductance of CO2, and transpiration was apparent within 2 weeks of initiating salinity treatments, and gas exchange continued to decline until day 30 to 35. The diurnal pattern of leaf gas exchange was not altered by increased salinity. Salinity reduced CO2, light energy, and water-use efficiencies. Salinity sometimes reduced the ratio of variable to maximum fluorescence below that of the control, and this response was highly dependent on the ambient light conditions that preceded the measurements. Dark respiration was unaffected by salinity stress. Root zone salinity of 3 dS·m-1 administered for 52 days did not influence foliar sodium concentration or the ratio of sodium to potassium, but increased chloride concentration and decreased nitrogen concentration. The sodium response indicated that some form of exclusion or compartmentation occurred. Salinity reduced osmotic potential of root tissue but did not influence foliar osmotic or predawn xylem potential. These results indicate that A. squamosa is sensitive to salinity stress, and that the responses to salinity are consistent with other salt-sensitive woody perennial species.


2020 ◽  
Vol 67 (1) ◽  
pp. 168-174
Author(s):  
Y. Mahjoubi ◽  
T. Rzigui ◽  
M. Ben Massoud ◽  
O. Kharbech ◽  
N. Loussaief ◽  
...  

1975 ◽  
Vol 53 (5) ◽  
pp. 475-482 ◽  
Author(s):  
H. S. Srivastava ◽  
P. A. Jolliffe ◽  
V. C. Runeckles

An open flow system was used to examine the uptake and effects of NO2 on gas exchange by primary leaves of bean (Phaseolus vulgaris L.) under a variety of conditions of irradiance, temperature, humidity, and atmospheric CO2 and O2 concentrations. At 3.0 ppm, NO2 inhibited apparent photosynthesis and dark respiration in all the conditions tested. Both 3.0 ppm and 7.0 ppm NO2 inhibited the evolution of CO2 into CO2-free air. The absolute magnitude of photosynthetic inhibition by NO2 was greatest at high irradiance, at the optimum temperature for apparent photosynthesis, and at high humidities. Changes in CO2 concentration from 100 to 600 ppm and in O2 concentration from 0 to 21% did not affect the percentage inhibition of apparent photosynthesis by NO2. High temperatures increased the inhibitory effects of NO2 on dark respiration.The effects of NO2 on apparent photosynthesis, dark respiration, and CO2 evolution into CO2-free air were based on inhibitory effects exerted within the leaves and not on CO2 diffusion into the leaf. Transpiration rate and stomatal diffusion resistance were only slightly affected by NO2. The uptake of NO2 was enhanced by high temperature, low CO2 concentration, and high humidity. The results of these studies support the view that NO2 uptake is subject to internal limitations ("mesophyll resistance") under many environmental conditions.The range and prevalence of NO2 effects suggest that NO2 may cause general detrimental changes in the physiology of leaf cells. Furthermore, the circumstances under which NO2 effects were found to occur indicate that such effects may be significant in natural ecosystems.


Plants ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 81 ◽  
Author(s):  
Ashley Eustis ◽  
Kevin M. Murphy ◽  
Felipe H. Barrios-Masias

Quinoa (Chenopodium quinoa Willd.) is a highly nutritious crop that is resilient to a wide range of abiotic stresses; however, sensitivity to high temperatures is regarded as an impediment to adoption in regions prone to heat waves. Heat stress is usually associated with a decrease in crop reproductive capacity (e.g., pollen viability), yet little is known about how leaf physiological performance of quinoa is affected by high temperatures. Several trials were conducted to understand the effect of high temperatures, without confounding stressors such as drought, on ten selected quinoa genotypes considered to encompass heat sensitive and heat tolerant plant material. Plants were grown under favorable temperatures and exposed to two temperature treatments over four consecutive days. The heat treatment simulated heat waves with maximum and minimum temperatures higher during the day and night, while the control treatment was maintained under favorable temperatures (maximum and minimum temperatures for ‘Heat’: 45/30 °C and ‘Control’: 20/14 °C). Leaf gas exchange (day), chlorophyll fluorescence (predawn and day) and dark respiration (night) were measured. Results show that most quinoa genotypes under the heat treatment increased their photosynthetic rates and stomatal conductance, resulting in a lower intrinsic water use efficiency. This was partly corroborated by an increase in the maximum quantum yield of photosystem II (Fv/Fm). Dark respiration decreased under the heat treatment in most genotypes, and temperature treatment did not affect aboveground biomass by harvest (shoot and seeds). These results suggest that heat stress alone favors increases in leaf carbon assimilation capacity although the tradeoff is higher plant water demand, which may lead to plant water stress and lower yields under non-irrigated field conditions.


1997 ◽  
Vol 122 (1) ◽  
pp. 38-42 ◽  
Author(s):  
Thomas E. Marler ◽  
Leah E. Willis

Leaf gas exchange characteristics for 16 species of cycad were determined under field conditions in Miami, Fla. Net CO2 assimilation (ACO2) ranged from 4.9 μmol·m-2·s-1 for Lepidozamia peroffskyana Regel to 10.1 μmol·m-2·s-1 for Zamia furfuracea L. fil. in Aiton. Stomatal conductance to H2O (gs) was more variable, ranging from 85 mmol·m-2·s-1 for Cycas seemannii A. Br. to 335 mmol·m-2·s-1 for Encephalartos hildebrandtii A. Br. & Bouche. Transpiration (E) ranged from 1.7 mmol·m-2·s-1 for Cycas chamberlainii W.H. Brown & Keinholz to 4.8 mmol·m-2·s-1 for Encephalartos hildebrandtii. Highly variable E was more controlling of water-use efficiency than the less-variable ACO2. The difference between air and pinnae temperature ranged from 0.3 to 1.6 °C and was inversely related to mean gs among the species. The values within geographic regions representative of the native habitats of the species were highly variable. For example, two of the African species exhibited the highest and lowest values of water-use efficiency in the survey. Leaf gas exchange for the four largest species with arborescent growth form was less than that for the three small species with subterranean or short bulbous growth form. The diurnal variation in leaf gas exchange for Zamia furfuracea exhibited a two-peaked pattern with a distinct midday depression in ACO2 and gs. The ratio of dark respiration to maximum ACO2 for Zamia furfuracea was 0.04. As a group, the values for ACO2 and gs for these cycads ranked at the lower end of the range for all plants species.


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 511e-511
Author(s):  
Thomas E. Marler ◽  
Yasmina Zozor

Leaf gas-exchange responses of A. souamosa seedlings to salinity were studied in sand culture in a series of glasshouse experiments. Trees were irrigated with a complete nutrient solution as the control, or with this solution amended to 3 or 6 dS/m with sea salt. Inhibition of net CO2 assimilation, stomatal conductance of CO2, and transpiration was apparent 14 days after treatments were imposed, and continued to decline until day 30 to 35. The diurnal pattern of leaf gas exchange was not altered by salinity. Salinity reduced CO2, light energy, and water use efficiencies. Dark respiration and internal partial pressure of CO2 were unaffected by salinity stress. Results indicated that substrate salinity inhibited photosynthesis of A. souamosa via limitations on mesophyll capacity for CO2 assimilation and had little effect on gas phase limitations.


1993 ◽  
Vol 9 (4) ◽  
pp. 511-523 ◽  
Author(s):  
Steven F. Oberbauer ◽  
David B. Clark ◽  
Deborah A. Clark ◽  
Paul M. Rich ◽  
Gerardo Vega

ABSTRACTLight environment, leaf physiological characteristics, and growth were compared for forest-grown saplings of three species of tropical trees with known life histories. Light environment was assessed both by hemispherical canopy photography and a quantitative visual index of crown illumination. Leaf gas exchange characteristics were measured by infrared gas analysis. The species tested included Lecythis ampla, a species tolerant of understorey conditions, Pithecellobium elegans, a species found in relatively bright sites, and Simarouba amara, a fast-growing, light-demanding species.Annual height and diameter growth did not significantly differ between the three species, but highest average rates were found for Simarouba. Likewise, saplings of the three species were found in similar low light environments although Simarouba saplings were found in slightly brighter sites and Lecythis saplings were found in the lowest light environments. Despite similar light regimes, the species differed markedly in leaf area and gas exchange. Leaf areas of Lecythis saplings were five and ten-fold greater than Simarouba and Pithecellobium saplings, respectively. Light-saturated leaf photosynthesis and leaf dark respiration rates of Lecythis were about half those of Simarouba; rates of Pithecellobium were intermediate. Lecythis had the highest leaf photosynthesis at understorey diffuse light levels. Measures of annual growth were positively correlated with estimates of both direct and diffuse light with the strongest correlations between sapling performance and diffuse light.


2007 ◽  
Vol 43 (2) ◽  
pp. 223-239 ◽  
Author(s):  
H. K. L. K. GUNASEKARA ◽  
W. A. J. M. DE COSTA ◽  
E. A. NUGAWELA

The main objective of this study was to quantify the genotypic variation of photosynthetic and gas exchange parameters of Hevea and to examine their relationships to dry rubber yield and its components. Canopy photosynthesis (Pc) of the genotype RRISL 211 was 20 % greater than that of RRIC 121. This was primarily due to RRISL 211's greater light-saturated leaf photosynthetic rates and a greater leaf area index in the top canopy stratum. Tapping significantly increased Pc in RRISL 211, but not in RRIC 121. The genotypic variation in photosynthetic capacity was not reflected in the overall dry rubber yield, which did not differ between the two genotypes. However, analysis of yield components showed that while RRISL 211 may have preferentially partitioned a greater proportion of its additional assimilates to increasing the latex volume and extending the root system, RRIC 121 partitioned more assimilates to increasing its dry rubber content through greater biosynthesis of rubber. The higher plugging index and the greater post-tapping girth increment of RRIC 121 were probably responsible for observed increases in its dark respiration following tapping. Although RRISL 211 had a greater transpiration efficiency, this did not provide a yield advantage as the trees were growing in an environment with adequate rainfall throughout the year.


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 685e-685
Author(s):  
Thomas E. Marler ◽  
Yasmina Zozor

Whole plant growth, foliage mineral content, and leaf gas exchange were measured on Mammea americana seedlings exposed to salinity ranging from 0 to 8 dS·m–1 to determine relative tolerance of this species. In one study, growth measured as leaf area, trunk cross-sectional area, and total dry mass was reduced by 23 weeks of exposure to salinity. Growth of plants exposed to 8 dS·m–1 was ≈30% below that of control plants. Leaf gas exchange was reduced by salinity to a greater degree than the growth variables. Stomatal conductance of plants exposed to 8 dS·m–1 was ≈70% below that of control plants. Plants exposed to 8 dS·m–1 exhibited a seven-fold increase in leaf chloride and 13-fold increase in leaf sodium compared to the control plants. In a second study, 8 weeks of exposure to 8 dS·m–1 reduced net CO2 assimilation and apparent quantum yield to ≈50% of the values for the control plants. Dark respiration was not influenced by salinity. The results indicate that Mammea americana is moderately sensitive to salinity stress.


Sign in / Sign up

Export Citation Format

Share Document