Measurements of the volumetric and transverse elastic extensibilities of Chara corallina internodes by combining the external force and pressure probe techniques

1982 ◽  
Vol 60 (8) ◽  
pp. 1503-1511 ◽  
Author(s):  
E. Steudle ◽  
J. M. Ferrier ◽  
J. Dainty

The transverse and volumetric elastic extensibilities of Chara corallina internodal cell wall tubes were studied by simultaneous application of the external force and pressure probe measuring techniques. It was found that there is a deformation of the cell wall resulting from the concentrated force exerted by the external force, which dominates the transverse extensibility at low turgor pressures, and which can be important at high turgor pressure. The implications of the effect for the use of the external force technique on higher plant tissue are discussed.

2009 ◽  
Vol 36 (5) ◽  
pp. 383 ◽  
Author(s):  
John S. Boyer

Recently discovered reactions allow the green alga Chara corallina (Klien ex. Willd., em. R.D.W.) to grow well without the benefit of xyloglucan or rhamnogalactan II in its cell wall. Growth rates are controlled by polygalacturonic acid (pectate) bound with calcium in the primary wall, and the reactions remove calcium from these bonds when new pectate is supplied. The removal appears to occur preferentially in bonds distorted by wall tension produced by the turgor pressure (P). The loss of calcium accelerates irreversible wall extension if P is above a critical level. The new pectate (now calcium pectate) then binds to the wall and decelerates wall extension, depositing new wall material on and within the old wall. Together, these reactions create a non-enzymatic but stoichiometric link between wall growth and wall deposition. In green plants, pectate is one of the most conserved components of the primary wall, and it is therefore proposed that the acceleration-deceleration-wall deposition reactions are of wide occurrence likely to underlie growth in virtually all green plants. C. corallina is one of the closest relatives of the progenitors of terrestrial plants, and this review focuses on the pectate reactions and how they may fit existing theories of plant growth.


1995 ◽  
Author(s):  
Susan Lurie ◽  
John Labavitch ◽  
Ruth Ben-Arie ◽  
Ken Shackel

The overall goal of the research was to understand the processes involved in the development of woolliness in peaches and nectarines. Four specific hypotheses were proposed and in the course of the research evidence was gathered t support two of them and to not support two others. The hypotheses and a summary of the evidence are outlined below. 1. That woolliness arises from an imbalance between the activities of the cell wall pectin degrading enzymes. Using 'Flavortop' nectarines and 'Hermoza' peaches as model systems, storage regimes were manipulated to induce or prevent woolliness. The expression (mRNA abundance), protein content (Western blotting), and activity of polygalacturonase (PG) and pectin esterase (PE) were followed. Expression of the enzymes was not different, but activity and the ratio between PG and PE activities were quite different in fruits developing woolliness or ripening normally. This was also examined by looking at the substrate, the pectin moiety of the cell wall, and i woolly fruit there were more high molecular weight pectins with regions of non-methylated galacturonic acid residues. Taking an in vitro approach it was found a) that PE activity was stable at 0oC while PG activity decreased; b) incubating the calcium pectate fraction of the cell wall with PE extracted from peaches caused the polymers to form a gel characteristic of the visual woolly symptoms in peaches. 2. That continued cell wall synthesis occurs during storage and contributes to structural changes i cell walls and improper dissolution and softening after storage. We tried to adapt our technique of adding 13C-glucose to fruit discs, which was used successfully to follow cell wall synthesis during tomato ripening. However, the difference in sugar content between the two fruits (4% in tomato and 12% in peach) meant that the 13C-glucose was much more diluted within the general metabolite pool. We were unable to see any cell wall synthesis which meant that either the dilution factor was too great, or that synthesis was not occurring. 3. That controlled atmosphere (CA) prevents woolliness by lowering all enzyme activities. CA was found to greatly reduce mRNA abundance of the cell wall enzymes compared to regular air storage. However, their synthesis and activity recovered during ripening after CA storage and did not after regular air storage. Therefore, CA prevented the inhibition of enzyme activation found in regular air storage. 4. That changes in cell wall turgor and membrane function are important events in the development of woolliness. Using a micro pressure probe, turgor was measured in cells of individual 'O'Henry' and 'CalRed' peaches which were woolly or healthy. The relationship between firmness and turgor was the same in both fruit conditions. These data indicate that the development and expression of woolliness are not associated with differences in membrane function, at least with regard to the factors that determine cell turgor pressure. In addition, during the period of the grant additional areas were explored. Encoglucanase, and enzyme metabolizing hemicellulose, was found to be highly expressed air stored, but not in unstored or CA stored fruit. Activity gels showed higher activity in air stored fruit as well. This is the first indication that other components of the cell wall may be involved in woolliness. The role of ethylene in woolliness development was also investigated at it was found a) that woolly fruits had decreased ability to produce ethylene, b) storing fruits in the presence of ethylene delayed the appearance of woolliness. This latter finding has implication for an inexpensive strategy for storing peaches and nectarines.


1982 ◽  
Vol 9 (4) ◽  
pp. 461 ◽  
Author(s):  
SD Tyerman ◽  
E Steudle

Hydraulic conductivity (Lp), volumetric elastic modulus (ε) and reflection coefficients (δ) have been determined for cells from isolated strips of the lower epidermis of leaves of Tradescantia virginiana using the pressure probe. Lp was (6.4 � 4.5) × 10-8 ms-1 Mpa-1 [(6.4 � 4.5) × 10-7 cm s-1 bar-1; mean � s.d., n = 15 cells] and was independent of the cell turgor pressure (P) and of osmotic pressure of the bathing medium. P in Johnson's solution (π° = 0.09 MPa) was 0.42-0.67 MPa (4.2-6.7 bar), which was somewhat larger than in the intact tissue. ε increased linearly with increasing P in the pressure range from zero to full turgor. Reflection coefficients of some non-electrolytes were determined by measuring the ΔP in response to a change in external osmotic pressure (Δπ°) after the addition of the solutes. The data were corrected for solute flow. For sucrose, mannitol, urea, acetamide, formamide, glycerol and ethylene glycol, δ was close to unity and the cells behaved like ideal osmometers. For the monohydroxyalcohols n-propanol ( δ = -0.58), isopropanol (δ = 0.26), ethanol (δ = 0.25) and methanol (δ = 0.15), rather low reflection coefficients were found which were even negative for some solutes and cells. Values of δ obtained from measuring the inital water (volume) flow were in agreement with those determined from the ΔP/Δπ° ratios. For the rapidly permeating substances, the changes in turgor after the addition of solute were transient and the equilibration of solutes between cell and medium could be measured using the probe. Although unstirred layers may affect the equilibration of solute it should, in principle, be possible to use the technique for the determination of permeability coefficients of membranes of higher plant cells.


2018 ◽  
Author(s):  
S. Lalitha Sridhar ◽  
J.K.E. Ortega ◽  
F.J. Vernerey

ABSTRACTExpansive growth is a process by which walled cells found in plants, algae and fungi, use turgor pressure to mediate irreversible wall deformation and regulate their shape and volume. The molecular structure of the primary cell wall must therefore be able to perform multiple function simultaneously such as providing structural support by a combining elastic and irreversible deformation and facilitate the deposition of new material during growth. This is accomplished by a network of microfibrils and tethers composed of complex polysaccharides and proteins that are able to dynamically mediate the network topology via constant detachment and reattachment events. Global biophysical models such as those of Lockhart and Ortega have provided crucial macroscopic understanding of the expansive growth process, but they lack the connection to molecular processes that trigger network rearrangements in the wall. In this context, we propose a statistical approach that describes the population behavior of tethers that have elastic properties and the ability to break and re-form in time. Tether properties such as bond lifetimes and stiffness, are then shown to govern global cell wall mechanics such as creep and stress relaxation. The model predictions are compared with experiments of stress relaxation and turgor pressure step-up from existing literature, for the growing cells of incised pea (Pisum sativus L.), algaeChara corallinaand the sporangiophores of the fungus,Phycomyces blakesleeanus. The molecular parameters are estimated from fits to experimental measurements combined with the information on the dimensionless number Πpethat is unique to each species. To our knowledge, this research is the first attempt to use a statistical approach to model the cell wall during expansive growth and we believe it will provide a better understanding of the cell wall dynamics at a molecular level.


2021 ◽  
Vol 254 ◽  
pp. 106942
Author(s):  
Gokhan Camoglu ◽  
Kursad Demirel ◽  
Fatih Kahriman ◽  
Arda Akcal ◽  
Hakan Nar ◽  
...  

2013 ◽  
Vol 13 (1) ◽  
pp. 2-9 ◽  
Author(s):  
Frans M. Klis ◽  
Chris G. de Koster ◽  
Stanley Brul

ABSTRACTBionumbers and bioestimates are valuable tools in biological research. Here we focus on cell wall-related bionumbers and bioestimates of the budding yeastSaccharomyces cerevisiaeand the polymorphic, pathogenic fungusCandida albicans. We discuss the linear relationship between cell size and cell ploidy, the correlation between cell size and specific growth rate, the effect of turgor pressure on cell size, and the reason why using fixed cells for measuring cellular dimensions can result in serious underestimation ofin vivovalues. We further consider the evidence that individual buds and hyphae grow linearly and that exponential growth of the population results from regular formation of new daughter cells and regular hyphal branching. Our calculations show that hyphal growth allowsC. albicansto cover much larger distances per unit of time than the yeast mode of growth and that this is accompanied by strongly increased surface expansion rates. We therefore predict that the transcript levels of genes involved in wall formation increase during hyphal growth. Interestingly, wall proteins and polysaccharides seem barely, if at all, subject to turnover and replacement. A general lesson is how strongly most bionumbers and bioestimates depend on environmental conditions and genetic background, thus reemphasizing the importance of well-defined and carefully chosen culture conditions and experimental approaches. Finally, we propose that the numbers and estimates described here offer a solid starting point for similar studies of other cell compartments and other yeast species.


2018 ◽  
Vol 28 (4) ◽  
pp. 169-178 ◽  
Author(s):  
Hyun-Ju Hwang ◽  
Yong Tae Kim ◽  
Nam Seon Kang ◽  
Jong Won Han

The algal cell wall is a potent barrier for delivery of transgenes for genetic engineering. Conventional methods developed for higher plant systems are often unable to penetrate or remove algal cell walls owing to their unique physical and chemical properties. Therefore, we developed a simple transformation method for <i>Chlamydomonas reinhardtii</i> using commercially available enzymes. Out of 7 enzymes screened for cell wall disruption, a commercial form of subtilisin (Alcalase) was the most effective at a low concentration (0.3 Anson units/mL). The efficiency was comparable to that of gamete lytic enzyme, a protease commonly used for the genetic transformation of <i>C. reinhardtii</i>. The transformation efficiency of our noninvasive method was similar to that of previous methods using autolysin as a cell wall-degrading enzyme in conjunction with glass bead transformation. Subtilisin showed approximately 35% sequence identity with sporangin, a hatching enzyme of <i>C. reinhardtii</i>, and shared conserved active domains, which may explain the effective cell wall degradation. Our trans­formation method using commercial subtilisin is more reliable and time saving than the conventional method using autolysin released from gametes for cell wall lysis.


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2625
Author(s):  
Nurashikin Kemat ◽  
Richard G. F. Visser ◽  
Frans A. Krens

One of the characteristics of hyperhydric plants is the reduction of cell wall lignification (hypolignification), but how this is related to the observed abnormalities of hyperhydricity (HH), is still unclear. Lignin is hydrophobic, and we speculate that a reduction in lignin levels leads to more capillary action of the cell wall and consequently to more water in the apoplast. p-coumaric acid is the hydroxyl derivative of cinnamic acid and a precursor for lignin and flavonoids in higher plant. In the present study, we examined the role of lignin in the development of HH in Arabidopsis thaliana by checking the wild-types (Ler and Col-0) and mutants affected in phenylpropanoid biosynthesis, in the gene coding for cinnamate 4-hydroxylase, C4H (ref3-1 and ref3-3). Exogenously applied p-coumaric acid decreased the symptoms of HH in both wild-type and less-lignin mutants. Moreover, the results revealed that exogenously applied p-coumaric acid inhibited root growth and increased the total lignin content in both wild-type and less-lignin mutants. These effects appeared to diminish the symptoms of HH and suggest an important role for lignin in HH.


2021 ◽  
Author(s):  
Maja Brus-Szkalej ◽  
Christian B. Andersen ◽  
Ramesh R. Vetukuri ◽  
Laura J. Grenville-Briggs Didymus

Transglutaminases (TGases) are enzymes highly conserved among prokaryotic and eukaryotic organisms, where their role is to catalyse protein cross-linking. One of the putative TGases of Phytophthora infestans has previously been shown to be localised to the cell wall. Based on sequence similarity we were able to identify six more genes annotated as putative TGases and show that these seven genes group together in phylogenetic analysis. All of the seven proteins are predicted to contain transmembrane helices and both a TGase domain and a MANSC domain, the latter of which was previously shown to play a role in protein stability. Chemical inhibition of transglutaminase activity and silencing of the entire family of the putative cell wall TGases are both lethal to P. infestans indicating the importance of these proteins in cell wall formation and stability. The intermediate phenotype obtained with lower drug concentrations and less efficient silencing displays a number of deformations to germ tubes and appressoria. Both chemically treated and silenced lines show lower pathogenicity than the wild type in leaf infection assays. Finally, we show that appressoria of P. infestans possess the ability to build up turgor pressure and that this ability is decreased by chemical inhibition of TGases.


Sign in / Sign up

Export Citation Format

Share Document