Growth responses of three contrasting Piper species growing under different light conditions

1990 ◽  
Vol 68 (6) ◽  
pp. 1182-1186 ◽  
Author(s):  
M. Esther Sanchez-Coronado ◽  
Emmanuel Rincòn ◽  
Carlos Vàzquez-Yanes

The growth responses of Piper aequale, Piper auritum, and Piper hispidum under contrasting light conditions at Los Tuxtlas Tropical Station, Mexico, and in growth chamber experiments were investigated. The species showed contrasting growth responses; Piper auritum was the less shade-tolerant species and Piper aequale, on the contrary, showed the ability to exploit conditions of intermediate light intensities, similar to those found in small gaps. Piper hispidum was able to sustain growth in both high and low light conditions; this response appears to be related with morphological plastic responses.

1978 ◽  
Vol 26 (1) ◽  
pp. 128-132
Author(s):  
D.P. de Vries ◽  
L. Smeets

Under the experimental conditions described in the preceding abstract, mortality increased with decreasing light intensities. The percentage of flowering seedlings increased and that of aborting ones decreased with irradiance. For the populations studied, no genotype-environment interactions for the percentages of flowering seedlings occurred. A selection procedure for roses with a low light requirement for flowering is considered. (Abstract retrieved from CAB Abstracts by CABI’s permission)


1977 ◽  
Vol 55 (12) ◽  
pp. 1650-1659 ◽  
Author(s):  
D. Chevallier ◽  
R. Douce ◽  
F. Nurit

The effect of DBMIB, antimycine A, and FCCP on respiration and photosynthesis of intact chlorophyllic moss (Funaria hygrometrica) spore was investigated.Antimycine A (1 μM) strongly inhibited dark respiration, was without effect on photosynthesis at high light intensities (above the saturation plateau values), and stimulated photosynthesis at low light intensities (below the saturation plateau values).DBMIB (3 μM) inhibited photosynthesis and was without effect, even under light conditions, on the dark respiration. Low amount of FCCP (3 μM) partially inhibited oxygen production at high light intensities. In this case, the inhibition observed was partially relieved by 1 μM antimycine A or 30 μM of KCN; higher concentration of FCCP totally inhibited the oxygen production.It seems likely, therefore, that in the chlorophyllic moss spore the cytochrome oxidase pathway is not functioning under high light intensities and that this inhibition of respiration is attributable to the low cytoplasmic ADP:ATP ratio.


1993 ◽  
Vol 71 (5) ◽  
pp. 661-665 ◽  
Author(s):  
Emmanuel Rincón

The growth responses of Brachythecium rutabulum, Eurhynchium praelongum, Lophocolea bidentata, Plagiomnium undulatum, Pseudoscleropodium purum, and Thuidiurn tamariscinum, growing under seven different light conditions, were determined in a 36-day laboratory experiment. Biomass production, relative growth rate, chlorophyll content, and morphological plastic responses (bending of the shoots) were determined following initial and final harvests. All species achieved greater biomass as irradiance increased. This trend was also observed in the relative growth rates, which were higher as irradiance increased, for all the bryophytes investigated. All species except L. bidentata showed an increased elevation of the shoot as irradiance decreased. Total chlorophyll was higher in all species at the lowest irradiance level, but no clear differences were observed in the ratios of chlorophyll a to b for all the species. Key words: grassland bryophytes, light intensity, growth analysis, plasticity.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chanaka Premarathne ◽  
Zhijian Jiang ◽  
Jialu He ◽  
Yang Fang ◽  
Qiming Chen ◽  
...  

Eutrophication, dredging, agricultural and urban runoffs, and epiphyte overgrowth could reduce light availability for seagrass. This may affect “blue carbon” stocks in seagrass beds. However, little research is available on the effect of light intensities on carbon sequestration capacity in seagrass beds, especially small-bodied seagrasses. The dominant seagrass Halophila beccarii, a vulnerable species on the IUCN Red List, was cultured in different light intensities to examine the response of vegetation and sediment carbon in seagrass beds. The results showed that low light significantly reduced leaf length and above-ground biomass, while carbon content in both above-ground and below-ground tissues were not affected. Low light reduced both the above-ground biomass carbon and the total biomass carbon. Interestingly, while under saturating light conditions, the subsurface and surface carbon content was similar, under low light conditions, subsurface sediment carbon was significantly lower than the surface content. The reduction of subsurface sediment carbon might be caused by less release flux of dissolved organic carbon from roots in low light. Taken together, these results indicate that reduced light intensities, to which these meadows are exposed to, will reduce carbon sequestration capacity in seagrass beds. Measures should be taken to eliminate the input of nutrients on seagrass meadows and dredging activities to maintain the “blue carbon” storage service by enhancing light penetration into seagrass.


Revista CERES ◽  
2015 ◽  
Vol 62 (2) ◽  
pp. 199-207
Author(s):  
Douglas Mochi Victor ◽  
Liana Jank ◽  
Beatriz Lempp ◽  
Rosangela Maria Simeão ◽  
Marcos Deon Vilela de Resende ◽  
...  

The silvopastoral system is a viable technological alternative to extensive cattle grazing, however, for it to be successful, forage grass genotypes adapted to reduced light need to be identified. The objective of this study was to select progenies of Panicum maximum tolerant to low light conditions for use in breeding programs and to study the genetic control and performance of some traits associated with shade tolerance. Six full-sib progenies were evaluated in full sun, 50% and 70% of light reduction in pots and subjected to cuttings. Progeny genotypic values (GV) increased with light reduction in relation to plant height (H) and specific leaf area (SLA). The traits total dry mass accumulation (DM) and leaf dry mass accumulation (LDM) had GV higher in 50% shade and intermediate in 70% shade. The GV of tiller number (TIL) and root dry mass accumulation (RDM) decreased with light reduction. The highest positive correlations were obtained for the traits H and RDM with SLA and DM; the highest negative correlations were between TIL and SLA and RDM, and H and LDM. The progenies showed higher tolerance to 50% light reduction and, among them, two stood out and will be used in breeding programs. It was also found that it is not necessary to evaluate some traits under all light conditions. All traits had high broad sense heritability and high genotypic correlation between progenies in all light intensities. There is genetic difference among the progenies regarding the response to different light intensities, which will allow selection for shade tolerance


1990 ◽  
Vol 38 (2) ◽  
pp. 111 ◽  
Author(s):  
DR Melick

Tristaniopsis laurina and Acmena smithii often form a dominant association in riparian warm temperate rainforest communities in Victoria. The photosynthetic and morphological responses of seedlings of these species to varied light regimes, and the growth responses of seedlings in different nutrient regimes were examined in the laboratory. Acmena smithii was the most shade tolerant, having the lowest light compensation points, dark respiration rates and greater increases in leaf area ratio under low light conditions. Tristaniopsis laurina consistently demonstrated greater maximum rates of leaf photosynthesis at higher photon flux densities. In response to increased nutrients, T. laurina seedlings showed a marked increase in growth and a decrease in root/shoot ratios, while A. smithii demonstrated relatively small growth increases and showed an increase in root/shoot ratios. These results are discussed in relation to the ecological status of these species within the rainforest communities.


2021 ◽  
Vol 168 (7) ◽  
Author(s):  
Jenny Fong ◽  
Rosa Celia Poquita-Du ◽  
Peter A. Todd

AbstractThis study examines phenotypically plastic responses in Pocillopora acuta collected from a highly urbanized reef environment to extreme low-light conditions. While among-species differences in how corals cope with low light are well documented, much less is known about within-species responses. It also remains unclear how extreme low light and provision of food may interact and influence coral physiology. Clonal fragments from six colonies (genotypes) of P. acuta were subjected to two light treatments with mean midday irradiances of 4 and 40 μmol photons m−2 s−1 photosynthetically active radiation (PAR), representing just 0.5 and 5% ambient light level, and were either fed with zooplankton or not fed for nine days. Corals maintained in 4 PAR had lower endosymbiont density but higher cellular chlorophyll a concentration than those in 40 PAR. Feeding rates were similar in both light treatments and had no significant effects on endosymbiont density and chlorophyll a concentrations. While genotypes varied in the level of phenotypic plasticity expressed for both photoacclimation and heterotrophy, most displayed similar directions in their responses, indicating photoacclimation in P. acuta is broadly predictable. Our study demonstrates that P. acuta from Singapore is able to acclimate to very low-light conditions by adjusting their photophysiology, providing additional evidence that this species is resilient to urbanization-related stress.


1973 ◽  
Vol 80 (2) ◽  
pp. 341-348 ◽  
Author(s):  
T. Lawrence ◽  
J. P. Cooper ◽  
E. L. Breese

SummaryIn the first paper of this series it was shown that Lolium perenne material required hardening periods involving low, but above freezing, temperatures before frost tolerance was achieved. The present experiments show that the light conditions during the hardening and prehardening periods are also important. At both stages a reduction in total light energy reduced subsequent cold tolerance but the relative effects of light intensity and photoperiod differed between the prehardening and hardening treatments. Thus low light input during the hardening period at 2 CC reduced cold tolerance most when given at higher intensities over shorter days (8 h) while during the prehardening growing period at 20 °C the reduction was greatest when the lower light input was given at low intensity over longer days (16 h).Varieties of different climatic origins reacted differentially to the treatments. The Mediterranean variety Fano was particularly adversely affected by low light intensities during hardening and also benefited from higher temperatures during the prehardening growing period. With higher light intensities and higher growth temperatures this Mediterranean variety approached the more northern material in cold tolerance; but as a corollary it was clear that the N. European variety Veja was able to harden under lower light conditions, and lower growing temperatures. The varieties Melle and S. 321 from intermediate latitudes, were intermediate in response.Although water soluble carbohydrate content was increased during the hardening period, except at the lowest light intensity (2·9 W/m2), no simple relationship between the WSC content and the cold tolerance of the different varieties could be detected.The results provide a useful guide to the pre-treatments necessary to discriminate between varieties for cold tolerance in such a way that the results can be correlated with field performance.


1978 ◽  
Vol 26 (4) ◽  
pp. 399-404
Author(s):  
D.P. de Vries ◽  
L.A.M. Dubois ◽  
L. Smeets

Seedlings of hybrid tea roses, previously selected in a growth room for flowering or flower bud abortion at low light intensities were grown in a greenhouse for periods of at least 14 months. Previously flowering seedlings whether grown on their own roots or on a rootstock yielded more flowers, particularly in winter, than previously aborting ones. This was due to a lower percentage of blind shoots and a tendency to produce more shoots. It was shown that selection for better winter performance under glass could be made in young seedlings. [For part 2 see HcA 48, 7528.] (Abstract retrieved from CAB Abstracts by CABI’s permission)


Sign in / Sign up

Export Citation Format

Share Document