Components of resistance in barley to stem rust: pre- and post-penetration development in seedling and adult plant leaves

1996 ◽  
Vol 74 (8) ◽  
pp. 1305-1312 ◽  
Author(s):  
J. Q. Liu ◽  
D. E. Harder

Seven barley (Hordeum vulgare) cultivars or breeding lines with different levels of resistance to stem rust and the susceptible wheat cultivar Little Club (Triticum aestivum) were inoculated with races QCC, QFC, and TPM of Puccinia graminis f.sp. tritici and examined using light microscopy to associate the sequence of histological events with phenotypic expression of resistance. There were no significant differences in urediniospore germination, appressorium formation, or substomatal penetration in any of the race–cultivar combinations in seedling leaves. Formation of primary haustorium mother cells (HMCs) was not affected by the presence or absence of the resistance gene Rpg1 when inoculated with race QCC, but was reduced considerably in lines possessing this gene after inoculation with races QFC and TPM. Development of all races was arrested during primary HMC formation to a greater extent in all barley lines than in Little Club wheat. The expression of resistance in barley to P. g. tritici was associated with the frequency of post-penetration abortion, the degree of reduction in colony growth, and the incidence of colony-associated necrosis of host cells. The rankings of the host lines based on these histological events were in agreement with the rankings for receptivity and urediniospore production determined previously on stem tissues of adult barley plants. Keywords: barley, stem rust, resistance, components, histology.

1986 ◽  
Vol 64 (3) ◽  
pp. 626-631 ◽  
Author(s):  
H. D. M. Gousseau ◽  
B. J. Deverall

The development of avirulent and virulent strains of stem rust (Puccinia graminis Pers. f.sp. tritici Eriks. & Henn.) in a susceptible wheat line and two cultivars bearing the Sr15 allele for resistance was studied, mainly by fluorescence microscopy. Formation of appressoria, substomatal vesicles, infection hyphae, and the first haustorium was unaffected by resistance. The first effect of Sr15 expression was a slower rate of haustorial mother cell formation and was first seen 48 h after inoculation. Effects on hyphal branching and colony radii followed. Necrosis of host cells was first seen at 42 h, but inspection of individual infection sites showed that necrosis did not coincide with effects on haustorial mother cells. It is possible that deterioration of host cells leading to visible host cell necrosis may be related to effects on rust development. Sr15 expression gave a mesothetic reaction, first seen microscopically 60 h after inoculation. Differences between individual infection sites in this reaction may be related to the timing of the onset of necrosis.


1977 ◽  
Vol 55 (11) ◽  
pp. 1445-1452 ◽  
Author(s):  
D. J. Samborski ◽  
W. K. Kim ◽  
R. Rohringer ◽  
N. K. Howes ◽  
R. J. Baker

Seedlings of resistant (Sr6) and susceptible (sr6) near-isogenic lines of wheat (Triticum aestivum L.) were inoculated with a race of stem rust (Puccinia graminis Pers. f. sp. tritici Eriks. & E. Henn.) that was avirulent on the line with Sr6 and they were kept at 19, 25, 26, and 27 °C. Fluorescence microscopy was used to detect autofluorescing necrotic host cells and rust colonies after these were stained with a fiuorochrome (Calcofluor White M2R New).In leaves containing the Sr6 gene, a smaller percentage of colonies grown at 25 °C had necrotic cells associated with them than those that were grown at 19 °C. The incidence of colony-associated necrosis in these leaves could be further reduced by increasing the temperature to 26 °C and 27 °C. Similarly, the number of necrotic host cells per colony decreased with an increase in temperature. Colonies in genotypically resistant leaves were usually smaller than those in genotypically susceptible leaves, but the differences in colony sizes between these two lines decreased at the higher temperatures.When infected plants containing the Sr6 gene were kept for varying times at 25 °C and then were transferred to 19 °C, there was significantly less fungal growth and more necrosis than in plants kept continuously at 25 °C. This necrosis occurred largely in those cells that were invaded after the transfer to 19 °C, when the Sr6 gene was activated.


Plant Disease ◽  
2013 ◽  
Vol 97 (3) ◽  
pp. 387-392 ◽  
Author(s):  
Mohsen Mohammadi ◽  
Davoud Torkamaneh ◽  
Mehran Patpour

Following emergence of Ug99, the new virulent race of Puccinia graminis f. sp. tritici in Africa, a global effort for identification and utilization of new sources of Ug99-resistant germplasm has been undertaken. In this study, we conducted replicated experiments to evaluate the resistance of Iranian wheat germplasm to the TTKSK lineage of the Ug99 race of P. graminis f. sp. tritici. We also evaluated for presence of stem rust resistance genes (i.e., Sr2, Sr24, Sr26, Sr38, Sr39, Sr31, and Sr1RSAmigo) in wheat cultivars and breeding lines widely cultivated in Iran. Our phenotyping data revealed high levels of susceptibility to Ug99 in Iranian bread wheat germplasm. Our genotyping data revealed that Iranian cultivars do not carry Sr24, Sr26, or Sr1RSAmigo. Only a few salt-tolerant cultivars and breeding lines tested positively for Sr2, Sr31, Sr38, or Sr39 markers. In conclusion, the genetic basis for resistance to Ug99 in Iranian wheat cultivars was found to be vulnerable. Acquiring knowledge about existing resistance genes and haplotypes in wheat cultivars and breeding lines will help breeders, cereal pathologists, and policy makers to select and pyramid effective stem rust resistance genes.


Plant Disease ◽  
2018 ◽  
Vol 102 (12) ◽  
pp. 2531-2538 ◽  
Author(s):  
Tegwe Soko ◽  
Cornelia M. Bender ◽  
Renée Prins ◽  
Zacharias A. Pretorius

Puccinia graminis f. sp. tritici race Ug99 (syn. TTKSK) has been identified as a major threat to wheat production based on its broad virulence. Despite its importance, the effect of Ug99 on different types of resistance in wheat has not been thoroughly researched. In field trials conducted with P. graminis f. sp. tritici race PTKST (Ug99 race group) over 2 years, AUDPC differentiated the moderately susceptible variety SC Stallion (515) and susceptible entries SC Nduna (995) and Line 37-07 (1634) from those with adult plant resistance (APR). AUDPC of APR varieties W1406 (256), W6979 (399), and Kingbird (209) was higher than the mean of 25 recorded for the all stage resistant (ASR) variety SC Sky. In fungicide-protected and unprotected plots, race PTKST resulted in a mean yield loss of 21.3%, with susceptible Line 37-03 recording a 47.9% decrease in grain yield. Yield reduction in APR varieties reached 19.5% in W1406, whereas the ASR control SC Sky showed a mean loss of 6.4%. Although APR reduced the effects of stem rust on yield and yield components under conditions of high disease pressure, it did not provide the same protection as effective ASR.


Plant Disease ◽  
2020 ◽  
Vol 104 (7) ◽  
pp. 1939-1943
Author(s):  
Xian Xin Wu ◽  
Qiu Jun Lin ◽  
Xin Yu Ni ◽  
Qian Sun ◽  
Rong Zhen Chen ◽  
...  

Wheat stem rust, caused by Puccinia graminis f. sp. tritici, is one of the most serious fungal diseases in wheat production, seriously threatening the global supply of wheat and endangering food security. The present study was conducted to evaluate wheat monogenic lines with known Sr genes to the most prevalent P. graminis f. sp. tritici races in China. In addition, wheat lines introduced from the International Maize and Wheat improvement Center (CIMMYT) with resistance to the Ug99 race group were also evaluated with the prevalent Chinese P. graminis f. sp. tritici races. The monogenic lines containing Sr9e, Sr21, Sr26, Sr31, Sr33, Sr35, Sr37, Sr38, Sr47, and SrTt3 were effective against races 21C3CTTTM, 34C0MRGSM, and 34C3MTGQM at both seedling and adult-plant stages. In contrast, monogenic lines containing Sr6, Sr7b, Sr8a, Sr9a, Sr9b, Sr9d, Sr9f, Sr9g, Sr13, Sr16, Sr18, Sr19, Sr20, Sr24, Sr28, Sr29, and Sr34 were highly susceptible to these races at both seedling and adult-plant stages. Lines with Sr5, Sr10, Sr13, Sr14, Sr15, Sr17, Sr21, Sr22, Sr23, Sr25, Sr27, Sr29, Sr30, Sr32, Sr36, and Sr39 were resistant to one or more of the tested races. Among the 123 CIMMYT lines, 38 (30.9%) showed varying levels of susceptibility to Chinese P. graminis f. sp. tritici races. The results should be useful for breeding wheat cultivars with resistance to stem rust.


1967 ◽  
Vol 45 (5) ◽  
pp. 555-563 ◽  
Author(s):  
P. K. Bhattacharya ◽  
Michael Shaw

Wheat leaves were detached 6 days after inoculation with the stem rust fungus (Puccinia graminis var. tritici Erikss. and Henn.) and fed with tritiated leucine, cytidine, uridine, or thymidine. Mesophyll cells in infected zones incorporated more leucine into protein and more cytidine and uridine into RNA than did cells in adjacent uninfected tissue. Leucine, cytidine, and uridine were also heavily incorporated by fungal mycelium and developing uredospores. Grain counts over host nuclei in the infected zone were two to three-fold of those over nuclei in adjacent uninfected zones. There was no detectable incorporation of thymidinemethyl-3H into either the fungus or the host cells. The results are discussed.


Genome ◽  
1988 ◽  
Vol 30 (2) ◽  
pp. 269-276
Author(s):  
M. Padidam ◽  
D. R. Knott

Resistance to stem rust (Puccinia graminis Pers. f. sp. tritici Eriks, and Henn.), particularly adult plant resisitance to race 15B-1, was studied in seven wheat (Triticum aestivum L.) cultivars or lines: 'Bonza', 'Chris', 'FKN-II-50-17', 'MRFY', 'Thatcher', 'Marquillo', and 'Hope'. Each of the seven was crossed with a susceptible parent and either F4- or F5-derived lines developed by single seed descent. All of the lines were tested with race 15B-1 in field nurseries. Lines derived from parents carrying seedling resistance to race 15B-1 were also tested as seedlings in the greenhouse with race 15B-1, and in some cases races 56, 29, and C65. The data indicated that 'Bonza' carries Sr6, probably Sr5, an unidentified gene giving resistance to race 56, two unidentified genes for resistance to race C65, and two minor genes that combine to produce intermediate adult plant resistance. 'Chris' carries Sr5, Sr7a, Sr8a, and Sr12. In addition, it may have three minor genes for adult plant resistance. 'FKN-II-50-17' carries Sr6 and may have four minor genes that combine to produce moderate adult plant resistance. 'MRFY', which is seedling susceptible to race 15B-1, carries Sr9b, possibly Sr5, plus an unidentified gene for resistance to C65. In addition, it appears to have one major gene for adult plant resistance plus two or more minor genes. 'Thatcher', 'Marquillo', and 'Hope' had only limited resistance to race 15B-1 in the field and no genetic analysis of their crosses was possible. The four parents that had good resistance to race 15B-1 in the field, 'Bonza', 'Chris', 'FKN-II-50-17', and 'MRFY', all carry minor genes for adult plant resistance that had little effect individually but produced moderate resistance when combined. The genes Sr5 and Sr9b, which have no effect on resistance to 15B-1 is seedlings, were found to significantly increase resistance in adult plants in the field.Key words: stem rust, Puccinia graminis tritici, wheat, Triticum aestivum, adult plant rust resistance.


2016 ◽  
Vol 106 (11) ◽  
pp. 1335-1343 ◽  
Author(s):  
Thomas Miedaner ◽  
Ann-Kristin Schmitt ◽  
Bettina Klocke ◽  
Brigitta Schmiedchen ◽  
Peer Wilde ◽  
...  

Stem rust (Puccinia graminis f. sp. secalis) leads to considerable yield losses in rye-growing areas with continental climate, from Eastern Germany to Siberia. For implementing resistance breeding, it is of utmost importance to (i) analyze the diversity of stem rust populations in terms of pathotypes (= virulence combinations) and (ii) identify resistance sources in winter rye populations. We analyzed 323 single-uredinial isolates mainly collected from German rye-growing areas across 3 years for their avirulence/virulence on 15 rye inbred differentials. Out of these, 226 pathotypes were detected and only 56 pathotypes occurred more than once. This high diversity was confirmed by a Simpson index of 1.0, a high Shannon index (5.27), and an evenness index of 0.97. In parallel, we investigated stem rust resistance among and within 121 heterogeneous rye populations originating mainly from Russia, Poland, Austria, and the United States across 3 to 15 environments (location−year combinations). While German rye populations had an average stem rust severity of 49.7%, 23 nonadapted populations were significantly (P < 0.01) more resistant with a stem rust severity ranging from 3 to 40%. Out of these, two modern Russian breeding populations and two old Austrian landraces were the best harboring 32 to 70% fully resistant plants across 8 to 10 environments. These populations with the lowest disease severity in adult-plant stage in the field also displayed resistance in leaf segment tests. In conclusion, stem rust populations are highly diverse and the majority of resistances in rye populations seems to be race specific.


Sign in / Sign up

Export Citation Format

Share Document