The interface between fungal hyphae and orchid protocorm cells

1996 ◽  
Vol 74 (12) ◽  
pp. 1861-1870 ◽  
Author(s):  
R. Larry Peterson ◽  
Yukari Uetake ◽  
Paola Bonfante ◽  
Antonella Faccio

Seeds of the orchids Platanthera hyperborea, Spiranthes lacera, and Spiranthes sinensis were germinated in vitro in the presence of compatible fungal species and the resulting colonized protocorms were studied by light microscopy, transmission electron microscopy, and colloidal-gold affinity techniques. Protocorm cells in early stages of colonization contained coils of fungal hyphae (pelotons) separated from host cell cytoplasm by the host plasma membrane and interfacial matrix material. Host cell walls were labelled by the colloidal gold – cellobiohydralase I (CBH-I) complex to detect cellulose and, particularly over the middle lamella, by antibodies that bind to pectins (JIM 5 and JIM 7). A polyclonal antibody that binds to β-1,3-glucans labelled the fungal cell wall heavily. None of the probes, however, labelled the interfacial matrix between the wall of active fungal hyphae and the surrounding plasma membrane. In contrast, the interfacial matrix material that ensheathed collapsing hyphae showed labelling after treatment with JIM 5, the polyclonal antibody, and the CBH-I complex. Labelling of host cell walls and fungal walls was similar to that described for early stages. Keywords: orchids, protocorms, mycorrhizas, affinity gold techniques, interfacial matrix.

1989 ◽  
Vol 35 (3) ◽  
pp. 349-358 ◽  
Author(s):  
Nicole Benhamou

Aplysia gonad lectin, isolated from the mollusc Aplysia depilans, was successfully conjugated to colloidal gold and used for ultrastructural detection of galacturonic acids in some pathogenic fungi. These sugar residues were found to occur in the fibrillar sheath surrounding hyphal cells of Ascocalyx abietina and in intravacuolar dense inclusions of this fungus spores. In hyphae and spores of Ophiostoma ulmi, galacturonic acids were detected mainly in the outermost wall layers. In contrast, these saccharides appeared associated with the innermost wall layers and especially the plasma membrane of Verticillium albo-atrum cells. Galacturonic acids were found to be absent in cells of Fusarium oxysporum f.sp. radicis-lycopersici and Candida albicans. These cytochemical data indicate therefore that a heterogeneity in wall composition exists between ascomycete fungi. The significance of the presence of galacturonic acids in the cell walls of certain fungi is still open to question.Key words: galacturonic acid, fungi, gold labeling, Aplysia depilans gonad lectin.


2005 ◽  
Vol 83 (5) ◽  
pp. 491-500 ◽  
Author(s):  
Francisco T Arroyo ◽  
Javier Moreno ◽  
Gregorio García-Herdugo ◽  
Berta De los Santos ◽  
Carmen Barrau ◽  
...  

The early stages of the infection of attached leaves and petioles of strawberry (Fragaria ×ananassa Duch. 'Camarosa') by Colletotrichum acutatum Simmonds were studied using scanning and transmission electron microscopy. Pre-penetration events of these tissues were similar, but the production of secondary conidia (microcyclic conidiation) was detected only on leaves. At the ultrastructural level, different stages of maturation of appressoria were observed and described. In young appressoria, the cell wall was composed of two layers and the plasma membrane displayed a wavy appearance. In the following stage, the appressorium developed a third electron-transparent layer between the cell wall and the plasma membrane. This new electron-transparent material was especially visible in the region of the appressorium near the cuticle. The plasma membrane of this appressorium showed a smooth appearance. Afterwards, a penetration peg emerged through the pore penetrating the cuticle and reached the epidermal wall where it enlarged to form an intramural infection vesicle. Both structures of infection, the penetration peg and the intramural infection vesicle, produced during the early phases of infection of strawbery tissues by C. acutatum, have not been previously reported and confirm that its invasion strategy is that of a subcuticular intramural pathogen. Once the infection was well established, abundant subcuticular and intramural hyphae were produced on petioles, causing severe degradation of the host cell walls. Occasionally, the cuticle appeared disrupted in those regions where the host walls were very degraded and dilated. Differences between colonization of petioles and leaves were observed.Key words: Colletotrichum acutatum, Fragaria ×ananassa, infection vesicle, invasion strategy, penetration peg.


Author(s):  
S. E. Keckler ◽  
D. M. Dabbs ◽  
N. Yao ◽  
I. A. Aksay

Cellular organic structures such as wood can be used as scaffolds for the synthesis of complex structures of organic/ceramic nanocomposites. The wood cell is a fiber-reinforced resin composite of cellulose fibers in a lignin matrix. A single cell wall, containing several layers of different fiber orientations and lignin content, is separated from its neighboring wall by the middle lamella, a lignin-rich region. In order to achieve total mineralization, deposition on and in the cell wall must be achieved. Geological fossilization of wood occurs as permineralization (filling the void spaces with mineral) and petrifaction (mineralizing the cell wall as the organic component decays) through infiltration of wood with inorganics after growth. Conversely, living plants can incorporate inorganics into their cells and in some cases into the cell walls during growth. In a recent study, we mimicked geological fossilization by infiltrating inorganic precursors into wood cells in order to enhance the properties of wood. In the current work, we use electron microscopy to examine the structure of silica formed in the cell walls after infiltration of tetraethoxysilane (TEOS).


Author(s):  
Annette Brandel ◽  
Sahaja Aigal ◽  
Simon Lagies ◽  
Manuel Schlimpert ◽  
Ana Valeria Meléndez ◽  
...  

AbstractThe opportunistic pathogen Pseudomonas aeruginosa has gained precedence over the years due to its ability to develop resistance to existing antibiotics, thereby necessitating alternative strategies to understand and combat the bacterium. Our previous work identified the interaction between the bacterial lectin LecA and its host cell glycosphingolipid receptor globotriaosylceramide (Gb3) as a crucial step for the engulfment of P. aeruginosa via the lipid zipper mechanism. In this study, we define the LecA-associated host cell membrane domain by pull-down and mass spectrometry analysis. We unraveled a predilection of LecA for binding to saturated, long fatty acyl chain-containing Gb3 species in the extracellular membrane leaflet and an induction of dynamic phosphatidylinositol (3,4,5)-trisphosphate (PIP3) clusters at the intracellular leaflet co-localizing with sites of LecA binding. We found flotillins and the GPI-anchored protein CD59 not only to be an integral part of the LecA-interacting membrane domain, but also majorly influencing bacterial invasion as depletion of either of these host cell proteins resulted in about 50% reduced invasiveness of the P. aeruginosa strain PAO1. In summary, we report that the LecA-Gb3 interaction at the extracellular leaflet induces the formation of a plasma membrane domain enriched in saturated Gb3 species, CD59, PIP3 and flotillin thereby facilitating efficient uptake of PAO1.


Holzforschung ◽  
2004 ◽  
Vol 58 (5) ◽  
pp. 483-488 ◽  
Author(s):  
Christian Hansmann ◽  
Manfred Schwanninger ◽  
Barbara Stefke ◽  
Barbara Hinterstoisser ◽  
Wolfgang Gindl

Abstract Spruce and birch earlywood was acetylated to different weight percent gains using three different acetylation procedures. The absorbance spectra of secondary cell wall and compound cell corner middle lamella were determined by means of UV microscopy. Analysis of the spectra showed that the characteristic lignin absorbance peak in the UV spectrum of wood around 280 nm shifted to shorter wavelengths in acetylated samples. A distinct relationship between achieved weight percent gains after acetylation and observed spectral shifts could be established revealing a certain potential to measure acetylation on a cellular level by means of UV microscopy.


1964 ◽  
Vol 20 (2) ◽  
pp. 217-233 ◽  
Author(s):  
G. W. Claus ◽  
L. E. Roth

The morphological features of the cell wall, plasma membrane, protoplasmic constituents, and flagella of Acetobacter suboxydans (ATCC 621) were studied by thin sectioning and negative staining. Thin sections of the cell wall demonstrate an outer membrane and an inner, more homogeneous layer. These observations are consistent with those of isolated, gram-negative cell-wall ghosts and the chemical analyses of gram-negative cell walls. Certain functional attributes of the cell-wall inner layer and the structural comparisons of gram-negative and gram-positive cell walls are considered. The plasma membrane is similar in appearance to the membrane of the cell wall and is occasionally found to be folded into the cytoplasm. Certain features of the protoplasm are described and discussed, including the diffuse states of the chromatinic material that appear to be correlated with the length of the cell and a polar differentiation in the area of expected flagellar attachment. Although the flagella appear hollow in thin sections, negative staining of isolated flagella does not substantiate this finding. Severe physical treatment occasionally produces a localized penetration into the central region of the flagellum, the diameter of which is much smaller then that expected from sections. A possible explanation of this apparent discrepancy is discussed.


1980 ◽  
Vol 58 (21) ◽  
pp. 2269-2273 ◽  
Author(s):  
H. B. Hanten ◽  
G. E. Ahlgren ◽  
J. B. Carlson

The anatomical development of the abscission zone in grains of Zizania aquatica L. was correlated with development of the embryo. The abscission zone is well developed when the embryo sac is mature. Soon after pollination, the first anatomical evidence of abscission appears as plasmolysis of the separation layer parenchyma cells. This is followed by separation of the layers by dissolution of the middle lamella and fragmentation of cell walls. Persistence of intact vascular tissue and presence of a surrounding cone-shaped mass of lignified cells may be involved in abscission of wild rice grains.


1997 ◽  
Vol 87 (1) ◽  
pp. 108-122 ◽  
Author(s):  
Nicole Benhamou ◽  
Patrice Rey ◽  
Mohamed Chérif ◽  
John Hockenhull ◽  
Yves Tirilly

The influence exerted by the mycoparasite Pythium oligandrum in triggering plant defense reactions was investigated using an experimental system in which tomato plants were infected with the crown and root rot pathogen Fusarium oxysporum f. sp. radicis-lycopersici. To assess the antagonistic potential of P. oligandrum against F. oxysporum f. sp. radicis-lycopersici, the interaction between the two fungi was studied by scanning and transmission electron microscopy (SEM and TEM, respectively). SEM investigations of the interaction region between the fungi demonstrated that collapse and loss of turgor of F. oxysporum f. sp. radicis-lycopersici hyphae began soon after close contact was established with P. oligandrum. Ultrastructural observations confirmed that intimate contact between hyphae of P. oligandrum and cells of the pathogen resulted in a series of disturbances, including generalized disorganization of the host cytoplasm, retraction of the plasmalemma, and, finally, complete loss of the protoplasm. Cytochemical labeling of chitin with wheat germ agglutinin (WGA)/ovomucoid-gold complex showed that, except in the area of hyphal penetration, the chitin component of the host cell walls was structurally preserved at a time when the host cytoplasm had undergone complete disorganization. Interestingly, the same antagonistic process was observed in planta. The specific labeling patterns obtained with the exoglucanase-gold and WGA-ovomucoid-gold complexes confirmed that P. oligandrum successfully penetrated invading cells of the pathogen without causing substantial cell wall alterations, shown by the intense labeling of chitin. Cytological investigations of samples from P. oligandrum-inoculated tomato roots revealed that the fungus was able to colonize root tissues without inducing extensive cell damage. However, there was a novel finding concerning the structural alteration of the invading hyphae, evidenced by the frequent occurrence of empty fungal shells in root tissues. Pythium ingress in root tissues was associated with host metabolic changes, culminating in the elaboration of structural barriers at sites of potential fungal penetration. Striking differences in the extent of F. oxysporum f. sp. radicis-lycopersici colonization were observed between P. oligandrum-inoculated and control tomato plants. In control roots, the pathogen multiplied abundantly through much of the tissues, whereas in P. oligandrum-colonized roots pathogen growth was restricted to the outermost root tissues. This restricted pattern of pathogen colonization was accompanied by deposition of newly formed barriers beyond the infection sites. These host reactions appeared to be amplified compared to those seen in nonchallenged P. oligandrum-infected plants. Most hyphae of the pathogen that penetrated the epidermis exhibited considerable changes. Wall appositions contained large amounts of callose, in addition to be infiltrated with phenolic compounds. The labeling pattern obtained with gold-complexed laccase showed that phenolics were widely distributed in Fusarium-challenged P. oligandrum-inoculated tomato roots. Such compounds accumulated in the host cell walls and intercellular spaces. The wall-bound chitin component in Fusarium hyphae colonizing P. oligandrum-inoculated roots was preserved at a time when hyphae had undergone substantial degradation. These observations provide the first convincing evidence that P. oligandrum has the potential to induce plant defense reactions in addition to acting as a mycoparasite.


PROTEOMICS ◽  
2009 ◽  
Vol 9 (15) ◽  
pp. 3913-3927 ◽  
Author(s):  
Robin Antrobus ◽  
Kyle Grant ◽  
Bevin Gangadharan ◽  
David Chittenden ◽  
Roger D. Everett ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document