Understory species composition and production in old-growth western hemlock – Sitka spruce forests of southeastern Alaska

1997 ◽  
Vol 75 (4) ◽  
pp. 574-580 ◽  
Author(s):  
Thomas A. Hanley ◽  
Ward W. Brady

Vascular understory species composition and production were studied in 36 stands in both northern and southern portions of southeastern Alaska, United States. Understory composition and production were related to site factors of soil drainage and slope and overstory factors of species composition, stand age, canopy coverage, and mass (net wood volume). Principal floristic gradients were dominated by differences in production of Alaska blueberry (Vaccinium alaskaense How.), skunk-cabbage (Lysichiton americanum Huit. & St. John), and lady fern (Athyrium filix-femina (L.) Roth). Soil drainage was the principal environmental factor determining understory species composition. Soil drainage also determined overstory mass and, consequently, total understory production, presumably through effects of overstory mass on light interception. Well-drained sites were more productive of trees and less productive of understory than were poorly drained sites. Relations between windthrow, soil drainage, overstory mass, and understory species composition and production are interactive in these excessively wet, old-growth forests. Key words: plant communities, biomass, forest overstory, temperate rain forest, Tsuga heterophylla, Picea sitchensis, Thuja plicata, western red cedar.


Fire Ecology ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
David Cowman ◽  
Will Russell

Abstract Background With the prevalence of catastrophic wildfire increasing in response to widespread fire suppression and climate change, land managers have sought methods to increase the resiliency of landscapes to fire. The application of prescribed burning in ecosystems adapted to fire can reduce fuel load and fire potential while minimizing impacts to the ecosystem as a whole. Coast redwood forests have historically experienced fire from both natural and anthropogenic sources, and are likely to respond favorably to its reintroduction. Results Random sampling was conducted in three burned sites and in three unburned sites, in an old-growth coast redwood (Sequoia sempervirens [D. Don] Endl.) forest. Data were collected on fuel, forest structure, and understory species composition and compared between treatments. Downed woody fuel, duff depth, litter depth, and density of live woody fuels were found to be significantly lower on sites treated with fire compared to unburned sites. Density of the dominant overstory canopy species, coast redwood and Douglas-fir (Pseudotsuga menziesii var. menziesii [Mirb.] Franco), remained consistent between treatments, and the abundance of herbaceous understory plant species was not significantly altered by burning. In addition, both downed woody fuel and live fuel measures were positively correlated with time since last burn, with the lowest measures on the most recently burned sites. Conclusions Our results indicated that the use of prescribed burning in old-growth redwood forests can provide beneficial reductions in live and dead surface fuels with minimal impacts to overstory trees and understory herbaceous species.



2001 ◽  
Vol 79 (4) ◽  
pp. 389-397 ◽  
Author(s):  
Hugh J Barclay

Leaf angle distributions are important in assessing both the flexibility of a plant's response to differing daily and seasonal sun angles and also the variability in the proportion of total leaf area visible in remotely sensed images. Leaf angle distributions are presented for six conifer species, Abies grandis (Dougl. ex D. Don) Lindl., Thuja plicata Donn. ex D. Don, Tsuga heterophylla (Raf.) Sarg., Pseudotsuga menziesii (Mirb.) Franco, Picea sitchensis (Bong.) Carr. and Pinus contorta Dougl. ex Loud. var. latifolia. The leaf angles were calculated by measuring four foliar quantities, and then the distributions of leaf angles are cast in three forms: distributions of (i) the angle of the long axis of the leaf from the vertical for the range 0–180°; (ii) the angle of the long axis of the leaf for the range 0–90°; and (iii) the angle of the plane of the leaf for the range 0–90°. Each of these are fit to the ellipsoidal distribution to test the hypothesis that leaf angles in conifers are sufficiently random to fit the ellipsoidal distribution. The fit was generally better for planar angles and for longitudinal angles between 0° and 90° than for longitudinal angles between 0° and 180°. The fit was also better for Tsuga heterophylla, Pseudotsuga menziesii, Picea sitchensis, and Pinus contorta than for Abies grandis and Thuja plicata. This is probably because Abies and Thuja are more shade tolerant than the other species, and so the leaves in Abies and Thuja are preferentially oriented near the horizontal and are much less random than for the other species. Comparisons of distributions on individual twigs, whole branches, entire trees, and groups of trees were done to test the hypothesis that angle distributions will depend on scale, and these comparisons indicated that the apparent randomness and goodness-of-fit increased on passing to each larger unit (twigs up to groups of trees).Key words: conifer, leaf angles, ellipsoidal distribution.



1993 ◽  
Vol 8 (2) ◽  
pp. 67-70 ◽  
Author(s):  
E. E. Nelson ◽  
Rona N. Sturrock

Abstract Several species of conifers were outplanted around infected stumps in Oregon and British Columbia to measure their susceptibility to laminated root rot caused by Phellinus weirii. Grand fir (Abies grandis) experienced nearly 30% mortality caused by P. weirii. Douglas-fir (Pseudotsuga menziesii) mortality exceeded 20%. Noble fir (A. procera), Sitka spruce (Picea sitchensis), giant sequoia (Sequoiadendron giganteum), western hemlock (Tsuga heterophylla), and ponderosa pine (Pinus ponderosa) mortality averaged less than 10%. Western white pine (P. monticola) and lodgepole pine (P. contorta) mortality was less than 1%. Phellinus weirii did not cause mortality of western redcedar (Thuja plicata) or redwood (Sequoia sempervirens). Apparent susceptibility, based on mortality over 17-20 growing seasons, was similar to that recorded in past field observations. West. J. Appl. For. 8(2):67-70.



2000 ◽  
Vol 30 (2) ◽  
pp. 239-256 ◽  
Author(s):  
Gordon W Frazer ◽  
J A Trofymow ◽  
Kenneth P Lertzman

We examined spatial and temporal differences in canopy openness and effective leaf area (Le) in a series of eight forest chronosequences located on southern Vancouver Island, British Columbia. Structural attributes were measured on the west and east side of the island in immature, mature, and old-growth stands using hemispherical photography and the LAI-2000 plant canopy analyzer (PCA). Old-growth forest canopies were distinct from those of younger stands: they were more open, more heterogeneous in their openness, and maintained a lower stand Le. Although the overall developmental trajectories of forests were similar across the study sites, site-to-site differences in the rate and magnitude of these temporal changes indicated that site-specific factors also play a significant role in determining the character of forest canopies and their development. The most significant changes in canopy structure did not emerge until the later stages of stand development (150-200 years). Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) dominated east-side forests were, on average, more open, more heterogeneous, and had a lower stand Le than the stands dominated by western hemlock (Tsuga heterophylla (Raf.) Sarg.) and western redcedar (Thuja plicata Donn.) forming the west-side chronosequences. Shoot clumping, along with other evidence, suggested that species-related differences in leaf display and the geometry of branching structure might have contributed significantly to these regional patterns.



2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Hong Huo ◽  
Qi Feng ◽  
Yong-hong Su

Understanding the factors that influence the distribution of understory vegetation is important for biological conservation and forest management. We compared understory species composition by multi-response permutation procedure and indicator species analysis between plots dominated by Qinghai spruce (Picea crassifoliaKom.) and Qilian juniper (Sabina przewalskiiKom.) in coniferous forests of the Qilian Mountains, northwestern China. Understory species composition differed markedly between the forest types. Many heliophilous species were significantly associated with juniper forest, while only one species was indicative of spruce forest. Using constrained ordination and the variation partitioning model, we quantitatively assessed the relative effects of two sets of explanatory variables on understory species composition. The results showed that topographic variables had higher explanatory power than did site conditions for understory plant distributions. However, a large amount of the variation in understory species composition remained unexplained. Forward selection revealed that understory species distributions were primarily affected by elevation and aspect. Juniper forest had higher species richness andα-diversity and lowerβ-diversity in the herb layer of the understory plant community than spruce forest, suggesting that the former may be more important in maintaining understory biodiversity and community stability in alpine coniferous forest ecosystems.



2004 ◽  
Vol 34 (4) ◽  
pp. 800-809 ◽  
Author(s):  
J M Kranabetter ◽  
K D Coates

Silviculture systems (clear-cut, partial-cut, and unharvested forest) were compared 9–10 years after harvesting to determine their effects on conifer nutrition and the availability of soil resources, especially nitrogen. These results were used to discuss the effects of silviculture systems on tree growth in relation to the more commonly described effects of light. Differences in soil properties across the silviculture treatments were most apparent in the forest floor. Depth and C/N ratio of the forest floor had decreased slightly in clearcuts, and forest-floor moisture was highest under partial-cut forest. Despite these differences in soil chemistry and soil moisture, no differences were detected in mineralizable N (anaerobic incubation) or in situ net N mineralization among treatments. Height growth and foliar mass were reduced under the low-light conditions of the partial-cut forest, but there were no differences in foliar N concentrations of hybrid white spruce (Picea glauca (Moench) Voss × Picea sitchensis (Bong.) Carrière), western redcedar (Thuja plicata Dougl. ex D. Don), or western hemlock (Tsuga heterophylla (Raf.) Sarg.) saplings. Mature western hemlock trees in partial-cut forest also had concentrations of foliar N equal to that of mature trees in the unharvested forest. Overall, we detected only minor effects of silviculture systems on soils after 10 years, and we conclude that light availability is likely more responsible for the current differences in tree growth.



1998 ◽  
Vol 88 (6) ◽  
pp. 633-640 ◽  
Author(s):  
T.D. Schowalter ◽  
L.M. Ganio

AbstractVariation in canopy arthropod abundances and community structure were evaluated in an old-growth (500-year-old) forest at the Wind River Canopy Crane Research Facility in southwestern Washington, USA. Arthropods were sampled at three canopy levels and two seasons in each of four tree species (Pseudotsuga menziesii, Tsuga heterophylla, Abies grandis, and Thuja plicata). The four tree species had distinguishable arthropod species compositions and community organization. Thuja plicata (Cupressaceae) had a particularly distinctive canopy fauna dominated by several mite taxa which did not occur on the other tree species (all Pinaceae). Pseudotsuga menziesii hosted a relatively diverse arthropod fauna with greatest richness of taxa and functional groups. Distinct arthropod assemblages were not observed among canopy levels and sampling dates, but these factors significantly influenced abundances of 63% of the arthropod taxa, either individually or interactively with other factors. These data indicate that forests managed for fewer tree species eliminate important components of arthropod diversity in Pacific Northwest forests and that sampling for biodiversity assessment also should represent season and canopy level.



2012 ◽  
Vol 78 (3) ◽  
pp. 572-582 ◽  
Author(s):  
Terri Lacourse ◽  
J. Michelle Delepine ◽  
Elizabeth H. Hoffman ◽  
Rolf W. Mathewes

AbstractPollen and conifer stomata analyses of lake sediments from Hippa Island on the north coast of British Columbia were used to reconstruct the vegetation history of this small hypermaritime island. Between 14,000 and 13,230 cal yr BP, the island supported diverse herb–shrub communities dominated by Cyperaceae, Artemisia and Salix. Pinus contorta and Picea sitchensis stomata indicate that these conifers were present among the herb–shrub communities, likely as scattered individuals. Transition to open P. contorta woodland by 13,000 cal yr BP was followed by increases in Alnus viridis, Alnus rubra and P. sitchensis. After 12,000 cal yr BP, Pinus-dominated communities were replaced by dense P. sitchensis and Tsuga heterophylla forest with Lysichiton americanus and fern understory. Thuja plicata stomata indicate that this species was present by 8700 cal yr BP, but the pollen record suggests that its populations did not expand to dominate regional rainforests, along with Tsuga and Picea, until after 6600 cal yr BP. Conifer stomata indicate that species may be locally present for hundreds to thousands of years before pollen exceed thresholds routinely used to infer local species arrival. When combined, pollen and conifer stomata can provide a more accurate record of paleovegetation than either when used alone.



Sign in / Sign up

Export Citation Format

Share Document