Canopy openness and leaf area in chronosequences of coastal temperate rainforests

2000 ◽  
Vol 30 (2) ◽  
pp. 239-256 ◽  
Author(s):  
Gordon W Frazer ◽  
J A Trofymow ◽  
Kenneth P Lertzman

We examined spatial and temporal differences in canopy openness and effective leaf area (Le) in a series of eight forest chronosequences located on southern Vancouver Island, British Columbia. Structural attributes were measured on the west and east side of the island in immature, mature, and old-growth stands using hemispherical photography and the LAI-2000 plant canopy analyzer (PCA). Old-growth forest canopies were distinct from those of younger stands: they were more open, more heterogeneous in their openness, and maintained a lower stand Le. Although the overall developmental trajectories of forests were similar across the study sites, site-to-site differences in the rate and magnitude of these temporal changes indicated that site-specific factors also play a significant role in determining the character of forest canopies and their development. The most significant changes in canopy structure did not emerge until the later stages of stand development (150-200 years). Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) dominated east-side forests were, on average, more open, more heterogeneous, and had a lower stand Le than the stands dominated by western hemlock (Tsuga heterophylla (Raf.) Sarg.) and western redcedar (Thuja plicata Donn.) forming the west-side chronosequences. Shoot clumping, along with other evidence, suggested that species-related differences in leaf display and the geometry of branching structure might have contributed significantly to these regional patterns.

1998 ◽  
Vol 88 (6) ◽  
pp. 633-640 ◽  
Author(s):  
T.D. Schowalter ◽  
L.M. Ganio

AbstractVariation in canopy arthropod abundances and community structure were evaluated in an old-growth (500-year-old) forest at the Wind River Canopy Crane Research Facility in southwestern Washington, USA. Arthropods were sampled at three canopy levels and two seasons in each of four tree species (Pseudotsuga menziesii, Tsuga heterophylla, Abies grandis, and Thuja plicata). The four tree species had distinguishable arthropod species compositions and community organization. Thuja plicata (Cupressaceae) had a particularly distinctive canopy fauna dominated by several mite taxa which did not occur on the other tree species (all Pinaceae). Pseudotsuga menziesii hosted a relatively diverse arthropod fauna with greatest richness of taxa and functional groups. Distinct arthropod assemblages were not observed among canopy levels and sampling dates, but these factors significantly influenced abundances of 63% of the arthropod taxa, either individually or interactively with other factors. These data indicate that forests managed for fewer tree species eliminate important components of arthropod diversity in Pacific Northwest forests and that sampling for biodiversity assessment also should represent season and canopy level.


2000 ◽  
Vol 30 (12) ◽  
pp. 1922-1930 ◽  
Author(s):  
Sean C Thomas ◽  
William E Winner

Leaf area index (LAI) in old-growth Douglas-fir (Pseudotsuga menziesii var menziesii (Mirb.) Franco) forests exceeds that of any other forest ecosystem by some estimates; however, LAI determinations in coniferous forests have generally been indirect, involving extrapolations of patterns observed in younger stands. Aided by a 75-m construction crane for canopy access, we used a vertical line-intercept method to estimate LAI for a [Formula: see text]450-year-old Douglas-fir - western hemlock (Tsuga heterophylla (Raf.) Sarg.) forest in southwestern Washington state. LAI was calculated as the product of foliage contact frequency and an "extinction coefficient" accounting for foliage angular distribution, geometry, and the ratio of "interceptable" to total leaf area. LAI estimates were 9.3 ± 2.1 (estimate ± 95% confidence interval), 8.5 ± 2.2, and 8.2 ± 1.8 in 1997, 1998, and 1999, respectively, or 8.6 ± 1.1 pooled across years. Understory vegetation, including foliage of woody stems <5 cm diameter, represented 20% of this total. Sample points in which Douglas-fir was dominant had a higher total LAI than points dominated by western hemlock, including a higher LAI of understory vegetation. Our results do not support the contention that old-growth Douglas-fir - western hemlock forests maintain an appreciably higher LAI than do other forest ecosystems. Moreover, LAI in very old stands may decline as western hemlock replaces Douglas-fir through the course of succession.


1976 ◽  
Vol 6 (1) ◽  
pp. 49-57 ◽  
Author(s):  
Henry L. Gholz ◽  
Franklin K. Fitz ◽  
R. H. Waring

Total leaf area varied from 20 to 42 m2/m2 in 250- to 450-year-old forest communities developed under different temperature and moisture conditions. The largest values were in communities at midelevations where winter snowpack accumulated and growing-season temperatures were cool. Shrub and herb leaf area varied from 3% to 14% of the total. Equations for converting from foliage biomass to surface area are included for most species encountered.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256571
Author(s):  
David B. Clark ◽  
Steven F. Oberbauer ◽  
Deborah A. Clark ◽  
Michael G. Ryan ◽  
Ralph O. Dubayah

The area of tropical secondary forests is increasing rapidly, but data on the physical and biological structure of the canopies of these forests are limited. To obtain such data and to measure the ontogeny of canopy structure during tropical rainforest succession, we studied patch-scale (5 m2) canopy structure in three areas of 18–36 year-old secondary forest in Costa Rica, and compared the results to data from old-growth forest at the same site. All stands were sampled with a stratified random design with complete harvest from ground level to the top of the canopy from a modular portable tower. All canopies were organized into distinct high- and low-leaf-density layers (strata), and multiple strata developed quickly with increasing patch height. The relation of total Leaf Area Index (LAI, leaf area per area of ground) to patch canopy height, the existence of distinct high and low leaf- density layers (strata and free air spaces), the depth and LAI of the canopy strata and free air spaces, and the relation of the number of strata to patch canopy height were remarkably constant across the entire successional gradient. Trees were the most important contributor to LAI at all stages, while contribution of palm LAI increased through succession. We hypothesize that canopy physical structure at the patch scale is driven by light competition and discuss how this hypothesis could be tested. That canopy physical structure was relatively independent of the identity of the species present suggests that canopy physical structure may be conserved even as canopy floristics shift due to changing climate.


2000 ◽  
Vol 30 (1) ◽  
pp. 17-24 ◽  
Author(s):  
Hiroaki Ishii ◽  
Joel H Reynolds ◽  
E David Ford ◽  
David C Shaw

A detailed analysis of diameter-height relationships was applied to an old-growth Pseudotsuga menziesii (Mirb.) Franco var. menziesii - Tsuga heterophylla (Raf.) Sarg. forest in southwestern Washington State, U.S.A., to predict future development of vertical stratification among tree species. Differences among species in relative abundance and size structure resulted in diameter-height regressions of varying certainty and stability. Damage and shading had negative impacts on predicted heights and estimates of maximum attainable height (Hmax) in all species. However, species varied as to the main causes and size dependency of damage in relation to tree height. Current height-growth rates of the upper canopy species declined with increasing tree height, reaching minimum values near the predicted Hmax. The future development of the forest canopy would involve a slow invasion of the upper canopy by Tsuga heterophylla and Thuja plicata Donn ex D. Don, as P. menziesii are near their maximum attainable height, and Abies amabilis Dougl. ex Forbes and Taxus brevifolia Nutt. are restricted to the middle to lower canopy. However, if current height-growth rates continue, P. menziesii should maintain its dominant status in the upper canopy for at least another century.


1956 ◽  
Vol 88 (5) ◽  
pp. 197-202 ◽  
Author(s):  
J. Walters ◽  
L. H. McMullen

The Douglas-fir hylesinus, Pseudohylesinus nebulosus (Leconte), is a common bark beetle in western North America from British Columbia to Mexico. Although Douglas fir, Pseudotsuga menziesii (Mirb.) Franco, is the preferred host, the beetle has been collected also from western red cedar, Thuja plicata Donn, grand fir, Abies grandis (Dougl.) Lindl., amabilis fir, Abies amabilis (Dougl.) Forb., and western hemlock, Tsuga heterophylla (Raf.) Sarg., on the west coast of British Columbia, and from western hemlock and western yellow pine, Pinus ponderosa Laws., in the interior of the Province. Swaine (1918) describes Pseudohylesinus nebulosus (Lec.) as “a slender species, with strong colour-markings in dark and light reddish-brown; the male very densely clothed with stout scales; the epistomal lobe strongly developed; length, 2.8 mm.; width, 1.2 mm. The supposed female has interspace 9 on the declivity less strongly serrate, and the elytral scales decidedly elongate and becoming plumose towards the base.”


2003 ◽  
Vol 33 (9) ◽  
pp. 1670-1682 ◽  
Author(s):  
Andreas Brunner ◽  
J P Kimmins

Asymbiotic nitrogenase activity in coarse woody debris was measured using the acetylene reduction assay under ambient conditions in three different stand ages (5, 53, and 88 years old) of an unmanaged second-growth Tsuga heterophylla (Raf.) Sarg. – Abies amabilis (Dougl. ex Loud.) Dougl. ex J. Forbes forest type and a Thuja plicata Donn. ex D. Don – Tsuga heterophylla old-growth forest on northern Vancouver Island, British Columbia, Canada. Four different decay classes of coarse woody debris, different species in the early decay stages, and sapwood and heart wood were sampled separately. Mean nitrogenase activity ranged between 1.3 and 19.5 nmol C2H4·d–1·(g dry mass)–1, with an overall mean of 5.7. High variability of the activity rates between logs and within logs was observed in all four stands. Mean activity rates were, in most cases, significantly different between decay classes, with generally increasing nitrogenase activity with the progress of decay. Moisture content of the samples was a good predictor of nitrogenase activity and could explain differences between decay classes. Only minor differences in nitrogenase activity were found between the different stands. Estimates of nitrogen fixation ranged from 1.0 to 2.1 kg N·ha–1·year–1, the magnitude of these values depending more on the mass of coarse woody debris substrate available for asymbiotic nitrogen-fixing bacteria (103–158 t·ha–1 in this study) than on differences in nitrogenase activity rates. The measured nitrogenase activity and the resultant estimates of nitrogen fixation are among the highest values reported in the literature.


1987 ◽  
Vol 2 (4) ◽  
pp. 111-114 ◽  
Author(s):  
Dean S. DeBell ◽  
Jerry F. Franklin

Abstract Growth and mortality were measured at 6-year intervals in a 1,180-acre old-growth stand in southwestern Washington. Principal tree species were Douglas-fir (Pseudotsuga menziesii), western hemlock (Tsuga heterophylla), Pacific silver fir (Abies amabilis), western redcedar (Thuja plicata), and western white pine (Pinus monticola). They composed 59, 27, 6, 6, and 1%, respectively, of the total cubic volume (13,290 ft³) in 1947. Gross volume growth averaged 94 ft³ per acre per year, and mortality averaged 86 ft³ per acre per year. Net growth was therefore minimal, and total stand volume remained nearly constant for 36 years. Douglas-fir, which accounted for only one-third of the gross growth and nearly one-half of the mortality, is losing dominance to western hemlock, which provided nearly one-half the gross growth and only 28% of the mortality. Pacific silver fir increased in importance in the lower canopy and composed 60% of the in-growth. Thus, although net gain in timber volume was nil, substantial changes occurred in stand characteristics during the 1947-1983 period. West. J. Appl. For. 2(4):111-114, October 1987.


Sign in / Sign up

Export Citation Format

Share Document