Characteristics of groundwater seepage with cut-off wall in gravel aquifer. I: Field observations

2015 ◽  
Vol 52 (10) ◽  
pp. 1526-1538 ◽  
Author(s):  
Yong-Xia Wu ◽  
Shui-Long Shen ◽  
Ye-Shuang Xu ◽  
Zhen-Yu Yin

This paper presents a case history of the leakage behavior during dewatering tests in the gravel strata of an excavation pit of a metro station in Hangzhou, China. The groundwater system at the test site is composed of a phreatic aquifer underlain by an aquitard and a confined aquifer with coarse sand and gravel. The sandy gravel stratum has very high hydraulic conductivity. The maximum depth of the excavation is 24 m below the ground surface, which reaches the middle of the aquitard strata, where the thickness of the clayey soil is insufficient to maintain the safety of the base of the excavation. To understand the hydrological characteristics of gravel strata, single- and double-well pumping tests were conducted, where a cut-off wall was installed 43 m deep with its base penetrating 2 to 3 m into the aquifer. Test results show that this partial cut-off of the aquifer cannot effectively protect the base of the excavation from the upward seepage force of the groundwater during excavation. Therefore, a new cut-off wall (second phase) was constructed to a depth of 54 m to cut off the confined aquifer. A second pumping test was conducted after the construction of the second phase cut-off wall, and test results show that this full cut-off combined with dewatering can control groundwater effectively during excavation. This finding indicates that when a deep excavation is conducted in a confined aquifer with high hydraulic conductivity, determination of the depth of the retaining wall should be based on three factors: the stability of the base, the upward seepage stability, and settlement control.

2015 ◽  
Vol 52 (10) ◽  
pp. 1539-1549 ◽  
Author(s):  
Yong-Xia Wu ◽  
Shui-Long Shen ◽  
Zhen-Yu Yin ◽  
Ye-Shuang Xu

This paper presents a numerical investigation into the leakage behavior of cut-off walls in gravel strata due to dewatering in a deep excavation pit. The calculated values of the groundwater head and surface settlement using a model agree well with the measured values. Values of the hydraulic conductivity (k) and storage coefficient (Ss) of each soil layer are obtained from the test results when the cut-off wall is 43 m deep. The leakage through the cut-off wall in gravel is analyzed by considering a variation in hydraulic conductivity in different sections of the cut-off wall. The simulated results show that a significant leakage occurred in the 54 m deep cut-off wall. Although leakage did occur in the full cut-off wall in the confined aquifer, the full cut-off wall is still more efficient in preventing groundwater seepage than the partial cut-off wall. The relative depths of the cut-off wall and of the wells have a significant effect on ground surface settlement during the withdrawal of groundwater. Therefore, the appropriate selection of relative depth of both cut-off wall and pumping well is an effective way of controlling surface settlement outside the pit.


2018 ◽  
Vol 49 (3) ◽  
pp. 299-308 ◽  
Author(s):  
Keisuke Inoue ◽  
Hiroomi Nakazato ◽  
Tomijiro Kubota ◽  
Koji Furue ◽  
Hiroshi Yoshisako ◽  
...  

1968 ◽  
Vol 25 (7) ◽  
pp. 1441-1452 ◽  
Author(s):  
Joseph D. Richard

A series of tests were conducted to determine the effectiveness of pulsed low-frequency acoustic signals for attracting fishes. The acoustic signals were contrived to simulate the hydrodynamically generated disturbances normally associated with active predation. Underwater television was used to observe fish arrivals during both control and test periods. Demersal predatory fishes were successfully attracted although they habituated rapidly to the acoustic stimulus. Members of the families Serranidae, Lutjanidae, and Pomadasyidae were particularly well represented among the fishes attracted. Sharks were also attracted in considerable numbers. Herbivorous reef fishes, although common around the test site, were not attracted. Possible relationships between the test results and the hearing capabilities of fishes are discussed. It is concluded that acoustic attraction techniques have potential applications in certain existing commercial fisheries.


2010 ◽  
Vol 14 (5) ◽  
pp. 699-707 ◽  
Author(s):  
Eun-Soo Hong ◽  
Eui-Seob Park ◽  
Hee-Soon Shin ◽  
Hyung-Mok Kim

2017 ◽  
Vol 48 (2) ◽  
pp. 71 ◽  
Author(s):  
Vincenzo Bagarello ◽  
Andrea De Santis ◽  
Giuseppe Giordano ◽  
Massimo Iovino

Performing ponding infiltration runs with non-circular sources could represent a good means to sample completely an area of interest. Regardless of the shape of the source, predicting the expected reliability of the collected data by infiltrometers should facilitate soil hydraulic characterisation and also allow a more conscious use of the field data. The influence of the shape of the infiltration source (i.e., circular or square) and the analysis procedure of the steady-state infiltration data on the saturated hydraulic conductivity, Ks, of a sandy-loam soil was tested in this investigation. Circular and square surfaces sampled with the pressure infiltrometer (PI) yielded similar estimates of Ks (i.e., differing by a factor of 1.05-1.16, depending on the calculation method) when an equivalent radius was considered to geometrically describe the square source. With the simplified falling head (SFH) technique, the shape of the source was irrelevant (i.e., circular and square sources yielding Ks values that differed by a factor of 1.19), as theoretically expected. For the steady-state PI experiment, the twoponding depth approach yielded two times smaller Ks values than the one-ponding depth (OPD) approach, probably due to lower steady-state flow rates than those expected for the second phase of the two-level run. The conclusions were that: i) simple infiltrometer experiments (PI, SFH) can be carried out with square sources; and ii) the simplest PI run (OPD approach) is expected to yield the most reliable predictions of Ks. Sampling other soils is advisable in an attempt to make these conclusions of general validity.


2002 ◽  
Vol 39 (3) ◽  
pp. 597-607 ◽  
Author(s):  
J K Kodikara ◽  
F Rahman ◽  
S L Barbour

Chemical compatibility tests using hydraulic conductivity testing with chemical permeants are normally undertaken to assess the integrity of compacted clayey liners used for waste containment. This paper highlights the fact that current routine methods of flexible wall and rigid wall testing techniques fail to represent the zero lateral strain boundary condition that is required to realistically represent the field situation. The test results indicate that flexible wall permeameters underestimate the likely increases in hydraulic conductivity due to chemicals, while the rigid wall permeameters can severely overestimate these effects. A new test technique, which incorporates the zero lateral strain condition in a simple manner, is presented. This technique involves the use of a rigid wall concept in a flexible wall permeameter. A split rigid mould is used to encase the soil specimen that is glued to the internal surfaces of the mould, to apply the zero lateral strain boundary condition. The new technique is shown to be suitable for both chemical compatibility and desiccation testing. The tests were undertaken with varying concentrations of saline water, methanol, and landfill leachate. The test results indicate that the new technique produces results that fall between the results obtained from flexible wall and rigid wall permeameters. It is argued that the new test technique provides a more rational approach for chemical compatibility testing than the current rigid wall and flexible wall techniques.Key words: soil, hydraulic conductivity, chemical compatibility, landfill, permeameter, boundary condition.


2011 ◽  
Vol 94-96 ◽  
pp. 1146-1151 ◽  
Author(s):  
Guan Rong ◽  
Xiao Jiang Wang

Permeability test for complete stress-strain process of coarse sandstone were carried out in triaxial test instrument. On the basis of test results, the influence of confining pressure and strain on the hydraulic conductivity was discussed. It is shown that in the complete stress-strain process, hydraulic conductivity changes in the law that presents the same character with the curve of stress-strain. The hydraulic conductivity reduces slightly with the increase of deviatoric stress in the stage of micro fracture compressing and elastic; In the elastoplastic stage, along with the expansion of new fractures, the hydraulic conductivity increases slowly at first and then reaches sharply to the maximum value after peak point; In the post-peak stage, the fracture which controls the hydraulic conductivity of coarse sandstone is compressed because of the confining pressure and the hydraulic conductivity decreases. During the process of deformation and failure, the hydraulic conductivity is more sensitive to the change of circumferential strain. With the increase of confining pressure, the increased value from initial to peak value and the decreased value from peak to residual value decreases.


2022 ◽  
Vol 12 (2) ◽  
pp. 745
Author(s):  
Hrvoje Glavaš ◽  
Matej Žnidarec ◽  
Damir Šljivac ◽  
Nikola Veić

Infrared thermography, in the analysis of photovoltaic (PV) power plants, is a mature technical discipline. In the event of a hailstorm that leaves the PV system without the support of the power grid (and a significant portion of the generation potential), thermography is the easiest way to determine the condition of the modules and revive the existing system with the available resources. This paper presents research conducted on a 30 kW part of a 420 kW PV power plant, and demonstrates the procedure for inspecting visually correct modules that have suffered from a major natural disaster. The severity of the disaster is shown by the fact that only 14% of the PV modules at the test site remained intact. Following the recommendations of the standard IEC TS 62446-3, a thermographic analysis was performed. The thermographic analysis was preceded by an analysis of the I-V curve, which was presented in detail using two characteristic modules as examples. I-V curve measurements are necessary to relate the measured values of the radiation and the measured contact temperature of the module to the thermal patterns. The analysis concluded that soiled modules must be cleaned, regardless of the degree of soiling. The test results clearly indicated defective module elements that would result in a safety violation if reused. The research shows that the validity criterion defined on the basis of the analysis of the reference module can be supplemented, but can also be replaced by a statistical analysis of several modules. The comparison between the thermographic analysis and the visual inspection clearly confirmed thermography as a complementary method for testing PV-s.


Sign in / Sign up

Export Citation Format

Share Document