Quantification of sample disturbance for soft, lightly over-consolidated, sensitive clay samples

Author(s):  
Toralv Berre ◽  
Tom Lunne ◽  
Jean-Sebastien L'Heureux

When using initial deformation from oedometer tests to quantify sample disturbance, a correction for false deformation is sometimes needed. A method to determine this false deformation is presented.

2007 ◽  
Vol 44 (6) ◽  
pp. 698-716 ◽  
Author(s):  
Toralv Berre ◽  
Tom Lunne ◽  
Knut H Andersen ◽  
Stein Strandvik ◽  
Morten Sjursen

Undrained triaxial and direct simple shear tests on samples reconsolidated to the in situ effective stresses and oedometer tests have been carried out on standard piston tube and on high quality block samples from 12 deposits of soft Norwegian marine clays. Based on the results of a selected number of these tests, empirical procedures for estimating the effect of sample disturbance have been developed. These procedures can be used to show the potential increase that may be achieved in undrained shear strength and apparent preconsolidation stress by taking high quality block samples. Suggestions are also given regarding corrections for rate of loading and temperature effects; as well, examples are given regarding possible consequences for design if higher strengths are utilized.Key words: soft clays, sample disturbance, consolidation procedures, stress–strain–strength behaviour.


2019 ◽  
Vol 92 ◽  
pp. 08003
Author(s):  
Anna d'Onofrio ◽  
Anna Chiaradonna ◽  
Giuseppe Lanzo ◽  
Mourad Karray

Clays with higher undisturbed undrained shear strengths than remoulded strengths are considered sensitive. While the stress-strain behaviour of these clays under monotonic loading condition was widely investigated, few data are available of their behaviour under cyclic and dynamic loading conditions. This paper presents the preliminary results of an experimental program on undisturbed samples of a sensitive clay retrieved at Saint Luc de Vincennes (Quebec). In particular, the paper shows the comparison among the modulus reduction curve, G/G0 - γ and the damping ratio variation with shear strain, D - γ measured using different devices, trying to highlight the main factors influencing the observed behaviour , including sample disturbance and storing method. The tests were carried out using one torsional shear and two different cyclic simple shear devices capable of investigating from small to large shear strains. The tests were carried out by three different laboratories at the Université de Sherbrooke, Canada, the University of Naples Federico II and the Sapienza University of Rome, Italy. Oedometric tests also performed by the three different research teams indicate that the clay samples were carefully shipped and stored, and the soil specimens were accurately prepared. Some differences were observed in the G/G0(γ) and D(γ) curves obtained by different tests, some of them ascribed to the intrinsic anisotropy of the investigated clay.


2014 ◽  
Vol 51 (8) ◽  
pp. 896-910 ◽  
Author(s):  
Toralv Berre

The tests in this investigation were performed on a natural soft clay with plasticity index around 32%, which was K0 consolidated to a vertical stress of 2942 kPa and then K0 unloaded to a vertical stress of 74 kPa (i.e., to the “in situ” stress). The specimens so created were disturbed in various ways to study the effect of sample disturbance on the stress–strain relationships during undrained shearing and during drained K0 loading (i.e., K0 triaxial and oedometer tests). The results for two testing alternatives may be summarized as follows. Alternative 1: Allow the specimen to swell at the correct in situ effective stresses, but accept an initial water content that is higher than the in situ value. This alternative was found to give the best stress–strain relationships around the in situ effective stresses for undrained triaxial tests, but with undrained shear strength values up to about 20% too low, due to the swelling taking place during consolidation to the in situ effective stresses. Alternative 2: Prevent swelling by starting the test at effective stresses that are higher than the in situ stresses, but with a water content that is closer to the in situ value than if alternative 1 is chosen. Using only isotropic stresses prior to shearing, this alternative was found to give better undrained shear strength values (although up to about 14% too high) but strain values much too small around the in situ effective stresses. For oedometer tests, only alternative 2 was investigated. Also, for these tests, the strains around the in situ stress were too small, but preconsolidation stresses estimated from stress–strain curves were typically only around 60% of the true value.


Author(s):  
D. L. Rohr ◽  
S. S. Hecker

As part of a comprehensive study of microstructural and mechanical response of metals to uniaxial and biaxial deformations, the development of substructure in 1100 A1 has been studied over a range of plastic strain for two stress states.Specimens of 1100 aluminum annealed at 350 C were tested in uniaxial (UT) and balanced biaxial tension (BBT) at room temperature to different strain levels. The biaxial specimens were produced by the in-plane punch stretching technique. Areas of known strain levels were prepared for TEM by lapping followed by jet electropolishing. All specimens were examined in a JEOL 200B run at 150 and 200 kV within 24 to 36 hours after testing.The development of the substructure with deformation is shown in Fig. 1 for both stress states. Initial deformation produces dislocation tangles, which form cell walls by 10% uniaxial deformation, and start to recover to form subgrains by 25%. The results of several hundred measurements of cell/subgrain sizes by a linear intercept technique are presented in Table I.


2020 ◽  
Author(s):  
Bipul Hawlader ◽  
◽  
Chen Wang ◽  
Ripon Karmaker ◽  
Didier Perret ◽  
...  

2019 ◽  
Vol 92 ◽  
pp. 01004
Author(s):  
Christopher Ibeh ◽  
Matteo Pedrotti ◽  
Alessandro Tarantino ◽  
Rebecca Lunn

The quality and reliability of cohesive soil laboratory test data can be significantlyaffected by sample disturbance during sampling or sample preparation. Sample disturbance may affect key design and modelling parameters such as stiffness, preconsolidation stress, compressibility and undrained shear strength, and ultimately determine particle mobilization and shear plane development. The use of X-ray computed tomography (X-CT) in the study of soil is restricted by the inverse relationship of specimen size and obtainable image resolution. This has led to the testing of miniature specimen sizes which are far less than conventional laboratory sample size in a bid to obtain high resolution images and detailed particle-scale soil properties; however, these miniature soil specimens are more prone to sample disturbance. In this work 2% muscovite was mixed with speswhite kaolin clay as a strain marker for use in X-CT. The clay soil sample was prepared from slurry and either consolidated using an oedometer or a gypsum mould. Specimens obtained from a 7 mm tube sampler were compared to lathe trimmed specimens with a diameter (Ø) of 7 mm. Results from X-CT imaging were used to study the influence of sampler type on specimen disturbance, by analysing the muscovite particle orientation of the obtained 3D images. The results show that; for samples subjected to large consolidation stress (>200kpa) lathe trimmed specimens may be subject to lesser disturbance compared to tube sampled specimens.


Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1131
Author(s):  
Soonkie Nam ◽  
Marte Gutierrez ◽  
Panayiotis Diplas ◽  
John Petrie

This paper critically compares the use of laboratory tests against in situ tests combined with numerical seepage modeling to determine the hydraulic conductivity of natural soil deposits. Laboratory determination of hydraulic conductivity used the constant head permeability and oedometer tests on undisturbed Shelby tube and block soil samples. The auger hole method and Guelph permeameter tests were performed in the field. Groundwater table elevations in natural soil deposits with different hydraulic conductivity values were predicted using finite element seepage modeling and compared with field measurements to assess the various test results. Hydraulic conductivity values obtained by the auger hole method provide predictions that best match the groundwater table’s observed location at the field site. This observation indicates that hydraulic conductivity determined by the in situ test represents the actual conditions in the field better than that determined in a laboratory setting. The differences between the laboratory and in situ hydraulic conductivity values can be attributed to factors such as sample disturbance, soil anisotropy, fissures and cracks, and soil structure in addition to the conceptual and procedural differences in testing methods and effects of sample size.


1991 ◽  
Vol 28 (1) ◽  
pp. 62-73 ◽  
Author(s):  
K. Y. Lo ◽  
I. I. Inculet ◽  
K. S. Ho

A comprehensive experimental investigation on the electroosmotic strengthening of soft sensitive clay was performed to assess the effectiveness of the treatment and to study the mechanism of the process. A specially designed electroosmotic cell was developed to prevent gas accumulation near the electrodes, to allow better electrode-soil contact, and to improve the treatment efficiency. This apparatus also enables the monitoring of the generated negative pore-water pressure along the sample length, settlement, voltage distribution, and current variation during treatment. The investigation covered two different types of soil trimmed at different orientations: the vertically and horizontally trimmed overconsolidated Wallaceburg clay and the vertically trimmed slightly overconsolidated soft sensitive Gloucester (Leda) clay. Results of this study showed that the voltage distribution and induced negative pore pressure at equilibrium along the sample are linear with steady current flow across the sample, indicating that the electrode design in the electroosmosis test apparatus is efficient. The electroosmotic consolidation curve is similar to that of the conventional consolidation curve, and the preconsolidation pressure was increased by 51–88% with an applied voltage up to 6 V. The undrained shear strength increased to a maximum of 172%, and the moisture content decreased by 30%. The technique of electrode reversal is employed, and a relatively uniform strength increase between the electrodes is observed. Key words: electroosmosis, electroosmotic cell, soft sensitive clay, negative pore-water pressure, preconsolidation pressure, stress–strain behaviour.


1990 ◽  
Vol 27 (1) ◽  
pp. 58-67 ◽  
Author(s):  
Mohammed G. Kabir ◽  
Alan J. Lutenegger

An investigation was conducted to demonstrate the applicability of cylindrical piezocone and flat piezoblade tests for providing reliable estimates of the coefficient of consolidation in clays. Coefficients of consolidation were calculated from piezocone dissipation tests for different degrees of consolidation using theoretical time factors to provide a comparison with laboratory oedometer tests. Three techniques were developed to calculate the coefficient of consolidation from piezoblade dissipation tests. Results from in situ pore pressure dissipation tests were compared with laboratory oedometer tests performed on undisturbed samples oriented in both the vertical and horizontal directions, to provide reference values of cv and ch. The results of investigations conducted at several clay sites are presented. Key words: in situ tests, piezocone, piezoblade, coefficient of consolidation, oedometer test, clays.


Sign in / Sign up

Export Citation Format

Share Document