scholarly journals Influence of stress history on undrained cyclic shear strength evolution

Author(s):  
Fauzan Sahdi ◽  
Joe Tom ◽  
Zhechen Hou ◽  
Mark Fraser Bransby ◽  
Christophe Gaudin ◽  
...  

Offshore infrastructure often interacts cyclically with the seabed over the operational life of a project. Previous research on the evolution of soil’s undrained strength under long term, large-amplitude cyclic loading has focused on contractile clays and demonstrated that this cyclic interaction can lead to the initial generation and later dissipation of positive excess pore pressure in the soil. This process generally leads to an initial strength reduction, with subsequent densification and soil strength gains that can have consequences on the performance of seabed infrastructure during its design life. In this paper, new experimental data from T-bar penetrometer testing in reconstituted kaolin and Gulf of Mexico clays is presented. The data illustrate how the stress history, quantified via the overconsolidation ratio, affects soil strength changes during large-amplitude cyclic loading. The experiments explore both long-term continuous loading cycles and episodic loading with packets of undrained cycles followed by quiescent consolidation periods. A critical state-based framework is used to interpret the experimental data and provide predictions of the long-term steady-state strength of both soils as a function of the initial in situ state of the soil.

2020 ◽  
Vol 57 (11) ◽  
pp. 1664-1683 ◽  
Author(s):  
Z. Zhou ◽  
D.J. White ◽  
C.D. O’Loughlin

This paper describes a centrifuge study using novel penetrometer tests (T-bar and piezoball) and model foundation tests to explore through-life changes in the strength of a reconstituted natural carbonate silt. The test procedures include episodic cyclic loading, which involves intervals of pore pressure dissipation between cyclic packets. These loads and the associated remoulding and reconsolidation cause significant changes in the soil strength and foundation capacity. Soil strength changes from penetrometer tests differed by a factor of 15 from the fully remoulded strength to a limiting upper value after long-term cyclic loading and reconsolidation. For the model foundation tests, the foundation capacity of a surface foundation and a deep-embedded plate were studied. The soil strength interpreted from the measured foundation capacity varied by a factor of up to three due to episodes of loading and consolidation, with an associated order of magnitude increase in the coefficient of consolidation. The results show a remarkable rise in soil strength over the loading events and provide a potential link between changes in soil strength observed in penetrometer tests and the capacity of foundations, allowing the effects of cyclic loading and consolidation to be predicted.


Author(s):  
Nathalie Boukpeti ◽  
Barry Lehane ◽  
J. Antonio H. Carraro

Design of offshore foundation systems requires assessment of the effects of cyclic loading on the soil strength. This paper investigates the applicability of the strain accumulation procedure, which is used to assess the effects of wave loading on the soil strength. Staged undrained cyclic simple shear tests were conducted on a carbonate sediment from the North West shelf of Australia, with varying shear stress amplitude in each stage. The shear strain mobilised at the end of the staged tests is compared with the value predicted by the strain accumulation procedure, using shear strain contours constructed from the results of single amplitude undrained cyclic simple shear tests. It was found that the strain accumulation procedure gives adequate prediction for normalised cyclic shear stress less or equal to 0.3, but largely underestimates the cyclic shear strain for normalised cyclic shear stress greater than 0.3 (the cyclic shear stress being normalised by the effective vertical stress at the end of consolidation).


Author(s):  
Zefeng Zhou ◽  
David J. White ◽  
Conleth D. O’Loughlin

Steel catenary risers (SCRs) are subjected to fatigue in the touchdown zone (TDZ) where the pipe interacts with the seabed. In this zone the seabed is subjected to intermittent episodes of cyclic loading and reconsolidation during long-term operation. Cyclic loading, reconsolidation and maintained load can cause variations in the soil strength and stiffness, which has a significant influence on the fatigue life of the riser in the TDZ. The weakening effect of cyclic loading on soil strength is well recognized throughout design practice, and methodologies for determining the cyclic ‘fatigue’ of clay during undrained cyclic loading are well established (e.g. Andersen et al. 1988; Andersen 2015). However, traditional undrained assessments neglect the effects of drainage and consolidation that inevitably occur in pipe-seabed interaction during long-term operational stages, and can lead to changes in stiffness by a factor of up to 5 or 10. This overlooked effect of consolidation on soil resistance and stiffness can be very important for SCR fatigue analysis. In this paper, a new analytical framework considering these effects has been used to analyze vertical pipe-seabed interaction. This framework is developed using a critical-state concept with effective stresses, and by discretizing the soil domain as a one-dimensional column of soil elements. The model can accurately capture the changing soil resistance and stiffness to account for the effects of remoulding, reconsolidation and maintained load. The framework is used to back-analysis the pipe-soil interaction response during small and large amplitude vertical cycles. The simulation prediction compares well with the measured results from the laboratory (Aubeny et al., 2008), and can accurately capture the observed changes in stiffness of up to a factor of 5.


2018 ◽  
Vol 55 (5) ◽  
pp. 689-697 ◽  
Author(s):  
Anna Mamou ◽  
Jeffrey A. Priest ◽  
Christopher R.I. Clayton ◽  
William Powrie

This paper presents results of a series of hollow cylinder tests carried out to investigate the undrained behaviour of saturated railway track foundation materials during cyclic loading involving principal stress rotation. Four sand–clay mixes representative of real railway track foundation materials were investigated. It was found that moderate additions of clay (up to ∼14% by weight) increased the cyclic shear stress threshold at which significant excess pore pressures started to accumulate. After the cyclic shear stress threshold had been exceeded, the rate of pore pressure increase with the logarithm of axial strain was greatest for the material having a clay content of 11%. Excess pore pressure generation reduced with increasing intergranular and global void ratio, with the global void ratio being perhaps the more useful indicator because of the reduced amount of scatter and higher correlation of the idealized relationship.


2001 ◽  
Vol 6 (2) ◽  
pp. 3-14 ◽  
Author(s):  
R. Baronas ◽  
F. Ivanauskas ◽  
I. Juodeikienė ◽  
A. Kajalavičius

A model of moisture movement in wood is presented in this paper in a two-dimensional-in-space formulation. The finite-difference technique has been used in order to obtain the solution of the problem. The model was applied to predict the moisture content in sawn boards from pine during long term storage under outdoor climatic conditions. The satisfactory agreement between the numerical solution and experimental data was obtained.


Author(s):  
Trần Thanh Nhàn

In order to observe the end of primary consolidation (EOP) of cohesive soils with and without subjecting to cyclic loading, reconstituted specimens of clayey soils at various Atterberg’s limits were used for oedometer test at different loading increments and undrained cyclic shear test followed by drainage with various cyclic shear directions and a wide range of shear strain amplitudes. The pore water pressure and settlement of the soils were measured with time and the time to EOP was then determined by different methods. It is shown from observed results that the time to EOP determined by 3-t method agrees well with the time required for full dissipation of the pore water pressure and being considerably larger than those determined by Log Time method. These observations were then further evaluated in connection with effects of the Atterberg’s limit and the cyclic loading history.


2016 ◽  
Vol 46 (3) ◽  
pp. 313-359 ◽  
Author(s):  
Marta Jordi Taltavull

One model, the resonance model, shaped scientific understanding of optical dispersion from the early 1870s to the 1920s, persisting across dramatic changes in physical conceptions of light and matter. I explore the ways in which the model was transmitted across these conceptual divides by analyzing the use of the model both in the development of theories of optical dispersion and in the interpretation of experimental data. Crucial to this analysis is the integration of the model into quantum theory because of the conceptual incompatibility between the model and quantum theory. What is more, a quantum understanding of optical dispersion set the grounds for the emergence of the first theories of quantum mechanics in 1925. A long-term history of the model’s transmission from the 1870s to the 1920s illuminates the ways in which the continuity of knowledge is possible across these discontinuities.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Pavlo Maruschak ◽  
Sergey Panin ◽  
Iryna Danyliuk ◽  
Lyubomyr Poberezhnyi ◽  
Taras Pyrig ◽  
...  

AbstractThe study has established the main regularities of a fatigue failure of offshore gas steel pipes installed using S-lay and J-lay methods.We have numerically analyzed the influence of preliminary deformation on the fatigue life of 09Mn2Si steel at different amplitudes of cyclic loading. The results have revealed the regularities of formation and development of a fatigue crack in 17Mn1Si steel after 40 years of underground operation. The quantitative analysis describes the regularities of occurrence and growth of fatigue cracks in the presence of a stress concentration.


2014 ◽  
Vol 8 (1) ◽  
pp. 44-48
Author(s):  
Grzegorz Mieczkowski ◽  
Krzysztof Molski

Abstract The increasing application of composite materials in the construction of machines causes strong need for modelling and evaluating their strength. There are many well known hypotheses used for homogeneous materials subjected to monotone and cyclic loading conditions, which have been verified experimentally by various authors. These hypotheses should be verified also for composite materials. This paper provides experimental and theoretical results of such verifications for bimaterial structures with interfacial cracks. Three well known fracture hypotheses of: Griffith, McClintock and Novozhilov were chosen. The theoretical critical load values arising from each hypotheses were compared with the experimental data including uni and multi-axial loading conditions. All tests were carried out with using specially prepared specimens of steel and PMMA.


Sign in / Sign up

Export Citation Format

Share Document