scholarly journals CHARACTERIZATION OF RHIZOBIA AND ARBUSCULAR MYCORRHIZAL FUNGI IN AREAS IMPACTED BY GRAVEL MINING IN BRAZIL

2019 ◽  
Vol 32 (4) ◽  
pp. 995-1004
Author(s):  
FELIPE FERREIRA DA SILVA ◽  
THAINÁ ALVES DOS SANTOS ◽  
EDERSON DA CONCEIÇÃO JESUS ◽  
GUILHERME MONTANDON CHAER

ABSTRACT On-shore oil exploration is one of the main economic activities in the semiarid region (Caatinga biome) of the state of Rio Grande do Norte (RN), Brazil. Gravel mining is an activity associated with oil exploration that causes environmental impacts. Gravel is a base-material for constructions, such as roads and pumpjack bases. The areas of gravel mining and other decommissioned areas where the gravel has been deposited must be revegetated with species native to the biome at end of the activity in the site. An efficient strategy for revegetation of degraded areas has been the planting of leguminous species that can associate with rhizobia and arbuscular mycorrhizal fungi (AMF). Nevertheless, the impact of mining activities on the autochthonous populations of these microorganisms is unknown. The objective of the present work is to characterize the density of rhizobia and AMF spores in four areas impacted by the oil exploration in RN when compared to non-impacted adjacent areas. Gravel samples were collected in dry and rainy seasons in two mining areas: one in a pumpjack base, and one in a waste disposal area. Surface soil (topsoil) samples were collected in adjacent areas with native Caatinga vegetation. Assays were carried out to evaluate the most probable number (MPN) of rhizobia and to identify the type and density of arbuscular mycorrhizal fungi (AMF), using rhizobia trap plants Mimosa tenuiflora (Mart.) Benth. and Mimosa caesalpiniifolia Benth. The MPN of rhizobia was low in all areas, but higher in the rainy season. The highest amount and diversity of AMF spores were found in the dry season. Among the symbiotic microorganisms studied, the AMF presented lower densities in the evaluated areas when compared to those in the adjcent native vegetation areas, denoting the impact of this activity.

Botany ◽  
2018 ◽  
Vol 96 (11) ◽  
pp. 767-778 ◽  
Author(s):  
Catarina Maria Aragão de Mello ◽  
Gladstone Alves da Silva ◽  
Fritz Oehl ◽  
Iolanda Ramalho da Silva ◽  
Inácio Pascoal do Monte Junior ◽  
...  

The objective of this study was to determine the species richness, diversity, and communities of arbuscular mycorrhizal fungi (AMF), based on the morphology of their spores, in maize plantations along an edaphoclimatic gradient going from a humid zone (original area of Atlantic rainforest), to a transition zone and a drier zone (original area of Caatinga), to increase the understanding of the ecology of AMF in tropical agroecosystems. We extracted glomerospores from soil samples from maize plantations in each mesoregion and analysed AMF propagules and community structure. A total of 57 AMF taxa were identified, of which two are new to science. The most probable number of AMF infective propagules did not differ among the three areas. A greater number of glomerospores was obtained from the transition site, whereas species richness for AMF differed between the high humidity and transition sites. The composition of AMF communities differed among sites, with edaphic attributes significantly associated with AMF community composition. The environmental conditions of each mesoregion contribute to the structural differences of AMF assemblages in soils cultivated by the same host plant (maize).


Soil Research ◽  
1979 ◽  
Vol 17 (3) ◽  
pp. 515 ◽  
Author(s):  
WM Porter

Estimates of the number of infective propagules of vesicular-arbuscular (VA) endophytes in two soils were obtained using a most probable number (MPN) method. These estimates were compared with counts of the number of spores in the same soils obtained using a conventional wet sieving method. In one soil, there was good agreement between the number of coarse endophyte propagules, estimated by the MPN technique, and the number of germinable spores extracted using the wet sieving technique. However, a large population of fine endophyte propagules (more than 230 per 50 g soil) could only be enumerated using the MPN technique. In the second soil, fewer coarse endophyte propagules were found using the wet sieving technique than when using the MPN technique. The MPN technique appears to give a more realistic estimate of the number of infective propagules of VA endophytes in field soils than the conventional method.


Soil Research ◽  
1983 ◽  
Vol 21 (1) ◽  
pp. 73 ◽  
Author(s):  
JM Wilson ◽  
MJ Trinick

Factors affecting the estimation of the number of infective propagules of vesicular arbuscular mycorrhizal fungi by the most probable number (MPN) method were investigated. The value obtained was shown to be dependent on the conditions of the experiment. Both temperature and time of harvest changed the result because of their effects on the growth of both roots and propagules, and hence on their interception. Other factors which must be taken into account in order to optimize the MPN estimate are discussed. The number of infective propagules in a dried root/soil inoculum was shown to be affected by both the amount of infection in the pot culture from which it was formed and by its age.


2019 ◽  
Vol 113 (2) ◽  
pp. 321
Author(s):  
Mazen IBRAHIM

The impact of indigenous arbuscular mycorrhizal fungi (AMF) on agronomic characteristics of sunflower (<em>Helianthus annuus</em> L.) was evaluated in a pot experiment. The indigenous AMF, including <em>Glomus intraradices, Glomus mosseae</em>, and <em>Glomus viscosum</em>, were isolated from an agricultural field in which cotton and sunflower plants were grown. The most abundant species (<em>G. viscosum</em>) was multiplied in a monospecific culture. Sunflower plants were inoculated with the mixture of three selected AMF species or solely with <em>G. viscosum</em>. The number of leaves, shoot length, head diameter, above ground biomass, and seeds mass were significantly higher in the plant inoculated with AMF mixture followed by individual inoculation with <em>G. viscosum</em> followed by the control. AMF mixture outperformed the <em>G. viscosumby</em> increasing mycorrhizal dependency and mycorrhizal inoculation effect of sunflower. The results indicate that AMF mixture could be considered as a good inoculum for improving growth and yield of sunflower in sustainable agriculture.


2012 ◽  
Vol 77 (1) ◽  
pp. 17-27 ◽  
Author(s):  
Anna Lisek ◽  
Lidia Sas Paszt ◽  
Beata Sumorok

Summary In organic farming, mineral fertilizers are replaced by various preparations to stimulate plant growth and development. Introduction of new biopreparations into horticultural production requires an assessment of their effects on the growth and yielding of plants. Among the important indicators of the impact on plants of beneficial microorganisms contained in bioproducts is determination of their effectiveness in stimulating the growth and yielding of plants. Moreover, confirmation of the presence of arbuscular mycorrhizal (AM) fungi in the roots and plant growth promoting rhizobacteria (PGPR) in the rhizosphere is also necessary. In addition to conventional methods, molecular biology techniques are increasingly used to allow detection and identification of AM fungi in plant roots. The aim of this study was identification and initial taxonomic classification of AM fungi in the roots of ‘Elkat’ strawberry plants fertilized with various biopreparations using the technique of nested PCR. Tests were performed on DNA obtained from the roots of ‘Elkat’ strawberry plants: not fertilized, treated with 10 different biopreparations, or fertilized with NPK. Amplification of the large subunit of ribosomal gene (LSU rDNA) was carried out using universal primers, and then, in the nested PCR reaction, primers specific for the fungi of the genera Glomus, Acaulospora, and Scutellospora were used. Colonization of strawberry roots by arbuscular mycorrhizal fungi was determined on the basis of the presence of DNA fragments of a size corresponding to the types of the fungi tested for. As a result of the analyses, the most reaction products characterizing AM fungi were found in the roots of plants treated with the preparation Florovit Eko. The least fragments characteristic of AM fungi were detected in the roots of plants fertilized with NPK, which confirms the negative impact of mineral fertilizers on the occurrence of mycorrhizal fungi in the roots of strawberry plants. The roots of plants fertilized with Tytanit differed from the control plants by the presence of one of the clusters of fungi of the genus Glomus and by the absence of a cluster of fungi of the genus Scutellospora. In the roots of plants treated with other biopreparations there were reaction products indicating the presence of fungi of the genera Glomus, Scutellospora and Acaulospora, like in the roots of the control plants. The results will be used to assess the suitability of microbiologically enriched biopreparations in horticultural production.


2017 ◽  
Vol 42 (6) ◽  
pp. 793-802 ◽  
Author(s):  
PIL U. RASMUSSEN ◽  
TARIQUE AMIN ◽  
ALISON E. BENNETT ◽  
KRISTINA KARLSSON GREEN ◽  
SARI TIMONEN ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Eva F. Leifheit ◽  
Anika Lehmann ◽  
Matthias C. Rillig

Microplastics (MPs) are ubiquitously found in terrestrial ecosystems and are increasingly recognized as a factor of global change (GCF). Current research shows that MP can alter plant growth, soil inherent properties, and the composition and activity of microbial communities. However, knowledge about how microplastic affects arbuscular mycorrhizal fungi (AMF) is scarce. For plants it has been shown that microplastic can both increase and decrease the aboveground biomass and reduce the root diameter, which could indirectly cause a change in AMF abundance and activity. One of the main direct effects of microplastic is the reduction of the soil bulk density, which translates to an altered soil pore structure and water transport. Moreover, especially fibers can have considerable impacts on soil structure, namely the size distribution and stability of soil aggregates. Therefore, microplastic alters a number of soil parameters that determine habitat space and conditions for AMF. We expect that this will influence functions mediated by AMF, such as soil aggregation, water and nutrient transport. We discuss how the impacts of microplastic on AMF could alter how plants deal with other GCFs in the context of sustainable food production. The co-occurrence of several GCFs, e.g., elevated temperature, drought, pesticides, and microplastic could modify the impact of microplastic on AMF. Furthermore, the ubiquitous presence of microplastic also relates to earth system processes, e.g., net primary production (NPP), carbon and nitrogen cycling, which involve AMF as key soil organisms. For future research, we outline which experiments should be prioritized.


2017 ◽  
Vol 28 (3) ◽  
pp. 619
Author(s):  
Martha Orozco Aceves ◽  
José Alonso Calvo Araya ◽  
Jean Alexander Gamboa Tabares ◽  
Wálter Peraza Padilla ◽  
Orlando Varela Rodríguez ◽  
...  

Soil fertilization with organic fertilizers comprises a practice that improves the soil biological properties; however, the effect of these on the soil food web (SFW) has been scarcely studied. The aim of this study was to determine the effect of two commercial organic fertilizers on the structure of the SFW associated with roots of blackberry plants (Rubus adenotrichos). The research was conducted in two blackberry plantations located one in San Martín de León Cortés, and the other one in Buena Vista de Pérez Zeledón in San José, Costa Rica, from August to December, 2010. In the two plantations, plants were fertilized with compost or vermicompost. The roots of blackberry plants surrounding soil were sampled in order to quantify groups of the SFW through the following techniques: bacteria and filamentous fungi by plate count, protozoa by the most probable number, spores from arbuscular mycorrhizal fungi and nematodes by flotation-centrifugation, microarthropods, macroarthropods, and worms were directly counted in soil samples. The dataset was analyzed by multidimensional scaling analysis. The addition of organic fertilizers to soil caused a differential effect on the structure of the SFW (as compared with non-fertilized soils). The effect differed in soil from each of the experimental plantations according to fertilizer type. The groups of organisms mainly affected were actinomycetes and protozoa, which implies that the structure of SFW and consequently, the function of soil were not affected by the addition of organic fertilizers.


Sign in / Sign up

Export Citation Format

Share Document