Cathode materials with mixed phases of orthorhombic MoO3 and Li0.042MoO3 for lithium-ion batteries

2020 ◽  
Vol 98 (2) ◽  
pp. 106-113
Author(s):  
Jiayuan Shi ◽  
Li Liu ◽  
Shusen Kang ◽  
Xiaotao Chen ◽  
Bin Shi

MoO3 is a promising cathode candidate for lithium-ion batteries and its electronic conductivity is usually improved by MoO3lithiation via reaction of MoO3 with LiCl solutions. However, this process might increase the manufacturing complexity and result in surface breakage of MoO3 cathodes. In this paper, by introducing lithium source into MoO3 synthesis, MoO3 can be lithiated through introduction of the Li0.042MoO3 phase into the MoO3 structure. XRD and ICP results indicate that the phase composition and lithium content can be regulated by changing the amount of lithium source in the reaction solutions. FESEM and specific surface area measurements show that the particle size becomes more uniform and the surface area is increased when the degree of MoO3 lithiation is higher. The lithiated MoO3 sample shows better cycling performance than that of pristine MoO3, which is mainly due to the enhanced conductivity and increased surface area of the lithiated MoO3.

2011 ◽  
Vol 399-401 ◽  
pp. 1467-1472 ◽  
Author(s):  
Li Bin Kang ◽  
Shi Chao Zhang ◽  
Ruo Xu Lin

Tin nano-spheres film was synthesized by electrodeposition based on the copper-nickel nano-pillars which were prepared by electrochemical method on the copper foil in an aqueous solution containing Cu (II) and Ni (II) at room temperature. The morphology, structure and composition of the as-prepared copper-nickel nano-pillars and tin nano-spheres were characterized by SEM, XRD, and EDS. The tin nano-spheres film anode features the large surface area, good electronic conductivity, and adhesion with the current collector, leading to the enhanced performance in lithium-ion batteries.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4348
Author(s):  
Chi Zhang ◽  
Zheng Wang ◽  
Yu Cui ◽  
Xuyao Niu ◽  
Mei Chen ◽  
...  

The volume expansion during Li ion insertion/extraction remains an obstacle for the application of Sn-based anode in lithium ion-batteries. Herein, the nanoporous (np) Cu6Sn5 alloy and Cu6Sn5/Sn composite were applied as a lithium-ion battery anode. The as-dealloyed np-Cu6Sn5 has an ultrafine ligament size of 40 nm and a high BET-specific area of 15.9 m2 g−1. The anode shows an initial discharge capacity as high as 1200 mA h g−1, and it remains a capacity of higher than 600 mA h g−1 for the initial five cycles at 0.1 A g−1. After 100 cycles, the anode maintains a stable capacity higher than 200 mA h g−1 for at least 350 cycles, with outstanding Coulombic efficiency. The ex situ XRD patterns reveal the reverse phase transformation between Cu6Sn5 and Li2CuSn. The Cu6Sn5/Sn composite presents a similar cycling performance with a slightly inferior rate performance compared to np-Cu6Sn5. The study demonstrates that dealloyed nanoporous Cu6Sn5 alloy could be a promising candidate for lithium-ion batteries.


2017 ◽  
Vol 5 (44) ◽  
pp. 23221-23227 ◽  
Author(s):  
Hao Wang ◽  
Ziliang Chen ◽  
Yang Liu ◽  
Hongbin Xu ◽  
Licheng Cao ◽  
...  

Hybrid nanocomposites constructed from starfish-like ZnxCo1−xS rooted in porous carbon and strongly coupled carbon nanotubes have been rationally designed and they exhibit excellent lithium-storage performance.


2015 ◽  
Vol 3 (7) ◽  
pp. 3962-3967 ◽  
Author(s):  
Xiaolei Wang ◽  
Ge Li ◽  
Fathy M. Hassan ◽  
Matthew Li ◽  
Kun Feng ◽  
...  

High-performance robust CNT–graphene–Si composites are designed as anode materials with enhanced rate capability and excellent cycling stability for lithium-ion batteries. Such an improvement is mainly attributed to the robust sponge-like architecture, which holds great promise in future practical applications.


CrystEngComm ◽  
2015 ◽  
Vol 17 (48) ◽  
pp. 9336-9347 ◽  
Author(s):  
Jingyun Ma ◽  
Longwei Yin ◽  
Tairu Ge

We report on the rational design and synthesis of three dimensional (3D) Cu-doped NiO architectures with an adjustable chemical component, surface area, and hierarchically porous structure as anodes for lithium ion battery.


Sign in / Sign up

Export Citation Format

Share Document