scholarly journals Non-Fickian diffusion in viscous aerosol particles

Author(s):  
Thomas Preston

Slow condensed phase diffusion in organic aerosol particles can impede many chemical and physical processes associated with atmospheric aerosol (e.g. gas-particle equilibrium partitioning). The characteristic times associated with these high viscosity particles are typically modelled using a concentration-dependent diffusivity within a purely Fickian framework. In that model, the medium in which diffusion is taking place is treated as being inviscid as far as mass transport is concerned. In this report, we investigate the validity of assuming that the viscosity is equal to zero by using a transport model that includes viscous pressure gradients. It is found that the effect of viscosity is negligible for particles with radii that are larger than 100 nm but, below that radius, it can delay water uptake and loss by orders of magnitude for physically realistic viscosities. However, if the Stokes-Einstein relation is obeyed then, even for nanosized particles, viscosity can be ignored. In addition to numerical calculations, a dimensionless Deborah number is defined that indicates the significance of Fickian diffusion compared to the rheological response during water transport.

2021 ◽  
Author(s):  
Paul Griffiths ◽  
Zeng Guang ◽  
Sungbo Shim ◽  
Jane Mulcahy ◽  
Lee Murray ◽  
...  

<p>A grand challenge in the field of chemistry-climate modelling is to understand the connection between anthropogenic emissions, atmospheric composition and the radiative forcing of trace gases and aerosols.   The AerChemMIP model intercomparison project, part of CMIP6, focuses on calculating the radiative forcing of gases and aerosol particles over the period 1850 to 2100.  We present an analysis of the trends in tropospheric ozone budget in the UKESM1 and other models from CMIP6 experiments. We discuss these trends in terms of chemical production and loss of ozone as well as physical processes such as transport and deposition.  Where possible, AerChemMIP attribution experiments such as histSST-piCH4, will be used to quantify the effect of individual emissions and forcing changes on the historical ozone burden and budget.  For future experiments, we focus on analogous experiments from the SSP3-70 scenario, a ‘regional rivalry’ shared socioeconomic pathway involving significant emissions changes.</p>


2019 ◽  
Author(s):  
Erin Evoy ◽  
Adrian M. Maclean ◽  
Grazia Rovelli ◽  
Ying Li ◽  
Alexandra P. Tsimpidi ◽  
...  

Abstract. Information on the rate of diffusion of organic molecules within secondary organic aerosol (SOA) is needed to accurately predict the effects of SOA on climate and air quality. Often, researchers have predicted diffusion rates of organic molecules within SOA using measurements of viscosity and the Stokes-Einstein relation (D ∝ 1/η where D is the diffusion coefficient and η is viscosity). However, the accuracy of this relation for predicting diffusion in SOA remains uncertain. We measured diffusion coefficients over eight orders in magnitude in proxies of SOA including citric acid, sorbitol, and a sucrose-citric acid mixture. These results were combined with literature data to evaluate the Stokes-Einstein relation for predicting diffusion of organic molecules in SOA. Although almost all the data agrees with the Stokes-Einstein relation within a factor of ten, a fractional Stokes-Einstein relation (D ∝ C/ηt) with t = 0.93 and C = 1.66 is a better model for predicting diffusion of organic molecules in the SOA proxies studied. In addition, based on the output from a chemical transport model, the Stokes-Einstein relation can over predict mixing times of organic molecules within SOA by as much as one order of magnitude at an altitude ~ 3 km, compared to the fractional Stokes-Einstein relation with t = 0.93 and C = 1.66. These differences can be important for predicting growth, evaporation, and reaction rates of SOA in the middle and upper part of the troposphere. These results also have implications for other areas where diffusion of organic molecules within organic-water matrices is important.


2008 ◽  
Vol 08 (03n04) ◽  
pp. L401-L407
Author(s):  
LUCIANO TELESCA ◽  
ROSA CAGGIANO ◽  
VINCENZO LAPENNA ◽  
MICHELE LOVALLO ◽  
SERENA TRIPPETTA ◽  
...  

The temporal fluctuations of particulate matter time series of three reference European stations have been investigated, by using the power spectrum analysis. Our results point out to the presence in particulate matter of annual periodicities superimposed on a scaling behaviour with exponent ranging between ~1.4 and ~1.6, indicating quite high persistent correlations. Furthermore, a crossover timescale at about 1 month, evidenced in all the signals analysed, could be linked with chemical-physical processes in which aerosol particles are involved during their atmospheric lifetimes.


2020 ◽  
Author(s):  
Marios Bruno Korras Carraca ◽  
Dimitris Manetas ◽  
David Patoulias ◽  
Spyros Pandis ◽  
Nikolaos Hatzianastassiou ◽  
...  

<p>Natural and anthropogenic aerosol particles are major drivers of the Earth’s radiation budget, which they affect directly (through scattering and absorption) and indirectly (through modification of cloud scattering and precipitation properties), while they semi-directly influence atmospheric stability and convection, mainly through modification of solar radiation absorption by the atmosphere. Despite the important climatic role of aerosols, large uncertainties in their radiative effects remain due to limited knowledge of the aerosol spatio-temporal distribution and physico-chemical properties. The interaction of aerosols with radiation is strongly dependent on their optical properties, which in turn are controlled by the particles’ size distribution, shape, chemical composition and mixing state. In order to accurately estimate the magnitude of the aerosol direct radiative effect (DRE), detailed knowledge of their optical properties with high spatial and temporal resolution is required.</p><p>The European continent is a region of particular interest for studying atmospheric aerosol effects, because of the presence of  numerous and varying sources of particles and their precursors, such as industries, large urban centers and biomass burning, especially when combined with high levels of solar insolation during summer. In this study, the aerosol DRE over Europe is examined using the FORTH deterministic spectral radiative transfer model (RTM) and aerosol data from the chemical transport model PMCAMx. Chemically and size resolved aerosol concentrations predicted by PMCAMx are combined with a Mie model to calculate key aerosol optical properties (i.e. vertically resolved aerosol optical depth, single scattering albedo and asymmetry parameter) that are necessary to compute aerosol DRE using the RTM. The Mie model takes into account concentrations of organics, black carbon, sulfate, nitrate, ammonium, chlorine, sodium, water, and crustal material, and calculates aerosol optical properties assuming that the aerosol particles of the same size are internally mixed. The DRE is estimated at the Earth’s surface, within the atmospheric column and at the top of the atmosphere (TOA), at high spatial and temporal resolution (36 × 36 km grids, 27 vertical layers, hourly), during June and July 2012.</p><p>Initial modelling results reveal that DREs exhibit significant spatio-temporal variability, due to the heterogeneity of source emissions rates, mostly with regard to wildfires, and the varying synoptic conditions. Emphasis is thus given to biomass burning aerosols, which are among the most significant radiative forcing agents in Europe during summer. Their relative forcing is computed by performing model computations with and without biomass burning emissions.</p>


1959 ◽  
Vol 40 (10) ◽  
pp. 493-498 ◽  
Author(s):  
Christian E. Junge

The field of atmospheric chemistry, which is defined as the chemistry of trace substances in the troposphere, is reviewed. Trace substances can be present as aerosols or as gases. Major sources of aerosols are the ocean and industrial activities. The chemical composition of the aerosol particles is not only determined by their source but also by various processes in the atmosphere—notably, reactions with gas traces. Only little is known about trace gases like SO2, H2S, NH3 or NO2. Of special importance for meteorology is CO2 and its long-term fluctuations. The facts and possible reasons for its 10 per cent increase during this century are discussed. The last part of the discussion is concerned with the physical processes by which the trace substances are removed from the atmosphere, primarily the role of precipitation.


2009 ◽  
Vol 9 (8) ◽  
pp. 2843-2861 ◽  
Author(s):  
S. R. Freitas ◽  
K. M. Longo ◽  
M. A. F. Silva Dias ◽  
R. Chatfield ◽  
P. Silva Dias ◽  
...  

Abstract. We introduce the Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS). CATT-BRAMS is an on-line transport model fully consistent with the simulated atmospheric dynamics. Emission sources from biomass burning and urban-industrial-vehicular activities for trace gases and from biomass burning aerosol particles are obtained from several published datasets and remote sensing information. The tracer and aerosol mass concentration prognostics include the effects of sub-grid scale turbulence in the planetary boundary layer, convective transport by shallow and deep moist convection, wet and dry deposition, and plume rise associated with vegetation fires in addition to the grid scale transport. The radiation parameterization takes into account the interaction between the simulated biomass burning aerosol particles and short and long wave radiation. The atmospheric model BRAMS is based on the Regional Atmospheric Modeling System (RAMS), with several improvements associated with cumulus convection representation, soil moisture initialization and surface scheme tuned for the tropics, among others. In this paper the CATT-BRAMS model is used to simulate carbon monoxide and particulate material (PM2.5) surface fluxes and atmospheric transport during the 2002 LBA field campaigns, conducted during the transition from the dry to wet season in the southwest Amazon Basin. Model evaluation is addressed with comparisons between model results and near surface, radiosondes and airborne measurements performed during the field campaign, as well as remote sensing derived products. We show the matching of emissions strengths to observed carbon monoxide in the LBA campaign. A relatively good comparison to the MOPITT data, in spite of the fact that MOPITT a priori assumptions imply several difficulties, is also obtained.


2005 ◽  
Vol 109 (1093) ◽  
pp. 101-118 ◽  
Author(s):  
Y. B. Suzen ◽  
P. G. Huang

Abstract A transport equation for the intermittency factor is employed to predict transitional flows under the effects of pressure gradients, freestream turbulence intensities, Reynolds number variations, flow separation and reattachment, and unsteady wake-blade interactions representing diverse operating conditions encountered in low-pressure turbines. The intermittent behaviour of the transitional flows is taken into account and incorporated into computations by modifying the eddy viscosity, μτ with the intermittency factor, γ. Turbulent quantities are predicted by using Menter’s two-equation turbulence model (SST). The onset location of transition is obtained from correlations based on boundary-layer momentum thickness, accelaration parameter, and turbulence intensity. The intermittency factor is obtained from a transport model which can produce both the experimentally observed streamwise variation of intermittency and a realistic profile in the cross stream direction. The intermittency transport model is tested and validated against several well documented low pressure turbine experiments ranging from flat plate cases to unsteady wake-blade interaction experiments. Overall, good agreement between the experimental data and computational results is obtained illustrating the predicting capabilities of the model and the current intermittency transport modelling approach for transitional flow simulations.


2006 ◽  
Vol 6 (1) ◽  
pp. 1355-1384 ◽  
Author(s):  
J. S. Henzing ◽  
D. J. L. Olivié ◽  
P. F. J. Van Velthoven

Abstract. A size dependent parameterization for the removal of aerosol particles by falling rain droplets is developed. Scavenging coefficients are calculated explicitly as a function of aerosol particle size and precipitation intensity including the full interaction of rain droplet size distribution and aerosol particles. The actual parameterization is a simple and accurate three-parameter fit through these pre-calculated scavenging coefficients. The parameterization is applied in the global chemistry transport model TM4 and the importance of below-cloud scavenging relative to other removal mechanisms is investigated for sea salt aerosol. For a full year run (year 2000), we find that below-cloud scavenging accounts for 12% of the total removal of super-micron aerosol. At mid-latitudes of both hemispheres the fractional contribution of below-cloud scavenging to the total removal of super-micron sea salt is about 30% with regional maxima exceeding 50%. Below-cloud scavenging reduces the global average super-micron aerosol lifetime from 2.47 to 2.16 days in our simulations. Despite large uncertainties in precipitation, relative humidity, and water uptake by aerosol particles, we conclude that below cloud scavenging is likely an important sink for super-micron sized sea salt aerosol particles that needs to be included in size-resolved aerosol models.


2007 ◽  
Vol 7 (3) ◽  
pp. 8525-8569 ◽  
Author(s):  
S. R. Freitas ◽  
K. M. Longo ◽  
M. A. F. Silva Dias ◽  
R. Chatfield ◽  
P. Silva Dias ◽  
...  

Abstract. We introduce the Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS). CATT-BRAMS is an on-line transport model fully consistent with the simulated atmospheric dynamics. Emission sources from biomass burning and urban-industrial-vehicular activities for trace gases and aerosol particles are obtained from several published datasets and remote sensing information. The tracer and aerosol mass concentration prognostic includes the effects of sub-grid scale turbulence in the planetary boundary layer, convective transport by shallow and deep moist convection, wet and dry deposition, and plume rise associated with vegetation fires in addition to the grid scale transport. The radiation parameterization takes into account the interaction between aerosol particles and short and long wave radiation. The atmospheric model BRAMS is based on the Regional Atmospheric Modeling System (RAMS), with several improvements associated with cumulus convection representation, soil moisture initialization and surface scheme tuned for the tropics, among others. In this paper the CATT-BRAMS model is used to simulate carbon monoxide and particulate material (PM2.5) surface fluxes and atmospheric transport during the 2002 LBA field campaigns, conducted during the transition from the dry to wet season in the southwest Amazon Basin. Model evaluation is addressed with comparisons between model results and near surface, radiosonde and airborne measurements performed during the field campaign, as well as remote sensing derived products. We show the matching of emissions strengths to observed carbon monoxide in the LBA campaign. A relatively good comparison to the MOPITT data, in spite of the fact that MOPITT a priori assumptions imply several difficulties, is also obtained.


2021 ◽  
Vol 14 (7) ◽  
pp. 4411-4428
Author(s):  
Ying Wei ◽  
Xueshun Chen ◽  
Huansheng Chen ◽  
Yele Sun ◽  
Wenyi Yang ◽  
...  

Abstract. The influence of sub-grid particle formation (SGPF) in point source plumes on aerosol particles over eastern China was firstly illustrated by implementing an SGPF scheme into a global–regional nested chemical transport model with an aerosol microphysics module. The key parameter in the scheme was optimized based on the observations in eastern China. With the parameterization of SGPF, the spatial heterogeneity and diurnal variation in particle formation processes in sub-grid scale were well resolved. The SGPF scheme can significantly improve the model performance in simulating aerosol components and new particle formation processes at typical sites influenced by point sources. The comparison with observations at Beijing, Wuhan and Nanjing showed that the normal mean bias (NMB) of sulfate and ammonium could be reduced by 23 %–27 % and 12 %–14 %, respectively. When wind fields are well reproduced, the correlation of sulfate between simulation and observation can be increased by 0.13 in Nanjing. Considering the diurnal cycle of new particle formation, the SGPF scheme can greatly reduce the overestimation of particle number concentration in nucleation and Aitken mode at night caused by fixed-fraction parameterization of SGPF. On the regional scale, downwind areas of point source experienced an increase in sulfate concentration of 25 %–50 %. The results of this study indicate the significant effects of SGPF on aerosol particles over areas with the point source and the necessity of a reasonable representation of SGPF processes in chemical transport models.


Sign in / Sign up

Export Citation Format

Share Document