Modeling water quality in an oil sands compensation lake

2015 ◽  
Vol 42 (11) ◽  
pp. 901-909 ◽  
Author(s):  
Jianhua Jiang ◽  
Jerry Vandenberg ◽  
Ian Halket ◽  
Kasey Clipperton ◽  
Richard J. Kavanagh ◽  
...  

Surface mining in the oil sands region of Alberta, Canada, often requires that mining operators drain lakes or divert streams to access the underlying ore. “Compensation lakes” can be constructed to create new fish habitat to offset the loss of fish habitat due to mining activity and to satisfy conditions under a project’s Fisheries Act Authorization. The design of these lakes requires prediction of future water temperature and dissolved oxygen levels to determine the suitability of the new habitat for fish. These predictions are made using a calibrated hydrodynamic and water quality model. Until recently, there were not any built compensation lakes in the region with enough measured water quality data that could be used to calibrate such a model. This paper uses measured data from Horizon Lake, a recently built compensation lake, to calibrate Generalized Environmental Modeling System of Surfacewaters (GEMSS), a three-dimensional hydrodynamic and water quality model, used to model the lake. Horizon Lake was built in 2008 by Canadian Natural Resources Ltd. and water quality in the lake has been monitored for the last seven years. The results of the model calibration to observed water temperature and dissolved oxygen provide rates and coefficients, notably sediment oxygen demand, that can be used to improve model applications to other planned compensation lakes.


2013 ◽  
Vol 726-731 ◽  
pp. 3256-3261
Author(s):  
Jia Fei Zhou ◽  
Cong Feng Wang ◽  
De Fu Liu ◽  
Jing Wen Xiang ◽  
Ping Zhao ◽  
...  

Filed hydrology and water quality data were collected near the Gezhouba Dam early December of 2012 to analyze the response of Chinese Sturgeon survival condition to water temperature, dissolved oxygen (DO), pH, transparency (SD) and bottom flow-velocity. The results showed that water temperature lag is unconspicuous. The water temperature of Gezhouba Dam Sanjiang (GDS) was lower than that of Gezhouba Dam River (GDR), and it hindered propagation of sturgeon eggs. DO decreased fast in the vertical water column of GDS, pH ranged from 7.5 to 7.71. The hydrology and water quality were suitable for the life condition of sturgeon eggs and fry, except index of bottom flow-velocity.



Author(s):  
Anant Patel ◽  
Karishma Chitnis

Abstract Rivers are critical to human life because they are strategically significant in the world, providing primary water supplies for various purposes. Rivers are the prime importance of any country as most of the cities are settled near the river. Due to developmental activities and increase in population, it will results into huge waste generation. Surface water quality is affected because of increasing urbanization and industrialization. The aim of this research is to examine the effect of climate change and industrialization on the water quality of the Sabarmati river using a mathematical model. For this study four important town along the lower Sabarmati River have been considered and water quality data was considered from 2005 to 2015. In this study different water quality parameters were considered to derive water quality model. Results shows the water quality in downstream after Ahmedabad city is worst compare to the other location where the Maximum WQI is 0.71 at Rasikapur and average WQI is 0.50 for the same location for last 15 year. It has been observed that effect of monsoon and also by comparing time scale water quality model role of regulations for industrialization also plays important role in quality of Sabarmati river.



2018 ◽  
Vol 34 ◽  
pp. 02041
Author(s):  
A.Kadir Adilah ◽  
Yusop Zulkifli ◽  
Z. Noor Zainura ◽  
Baharim N. Bakhiah

Sungai Johor estuary is a vital water body in the south of Johor and greatly affects the water quality in the Johor Straits. In the development of the hydrodynamic and water quality models for Sungai Johor estuary, the Environmental Fluid Dynamics Code (EFDC) model was selected. In this application, the EFDC hydrodynamic model was configured to simulate time varying surface elevation, velocity, salinity, and water temperature. The EFDC water quality model was configured to simulate dissolved oxygen (DO), dissolved organic carbon (DOC), chemical oxygen demand (COD), ammoniacal nitrogen (NH3-N), nitrate nitrogen (NO3-N), phosphate (PO4), and Chlorophyll a. The hydrodynamic and water quality model calibration was performed utilizing a set of site specific data acquired in January 2008. The simulated water temperature, salinity and DO showed good and fairly good agreement with observations. The calculated correlation coefficients between computed and observed temperature and salinity were lower compared with the water level. Sensitivity analysis was performed on hydrodynamic and water quality models input parameters to quantify their impact on modeling results such as water surface elevation, salinity and dissolved oxygen concentration. It is anticipated and recommended that the development of this model be continued to synthesize additional field data into the modeling process.



2012 ◽  
Vol 15 (4) ◽  
pp. 1061-1072 ◽  
Author(s):  
Chen Zhang ◽  
Xueping Gao ◽  
Liyi Wang ◽  
Yuanyuan Chen

This study presents the Yuqiao Reservoir Water Quality Model (YRWQM), a three-dimensional hydrodynamic and water quality model of the Yuqiao reservoir, China. The YRWQM was developed under the environmental fluid dynamics code (EFDC) model and was calibrated and verified to hydrodynamic and water quality data, using two sets of observed data from January 1 to December 31, 2006 and from May 1 to October 31, 2007, respectively. The primary hydrodynamic and transport driving forces are inflows/outflows and surface wind stresses. Considering effects of water transfer and wind on the advection-dispersion processes, the model results showed better agreements with observed data in the reservoir. The YRWQM predicted the variations of water quality resulting from agricultural pollution which flowed into the reservoir with floods lasting for 12 days in 2009. The results indicated that the concentrations of chemical oxygen demand and total nitrogen were increased 225 and 314%, respectively. Considering the interactions between chlorophyll-a and nitrogen in the model, the results indicated the reservoir was not a nitrogen-limited environment. We suggest the management should focus on agricultural pollution strategies for the reservoir during the flood period. The YRWQM could be a useful tool for water sources management in the reservoir.



Water ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2379
Author(s):  
Alejandra Zurita ◽  
Mauricio Aguayo ◽  
Pedro Arriagada ◽  
Ricardo Figueroa ◽  
María Elisa Díaz ◽  
...  

Most water bodies are currently used as receptors for pollutants coming mainly from the industrial and domestic sectors. The Biobío river is subjected to multiple anthropogenic pressures such as industrial water supply, drinking water, hydroelectric power generation, agriculture, and the final receptor body of a large amount of industrial and urban waste, pressures that will intensify due to the decrease in water flow as a result of climate change. In this context, organic contamination has been found mainly from sewage discharges and oxidizable waste discharges generated by industrial processes. In this sense, the objective of this research is to determine the Biological Oxygen Demand Loading Capacity (LC) in a basin with a low density of water quality data subjected to strong anthropogenic pressures. To estimate the carrying capacity in a section of the Biobío River, the water quality model River and Stream Water Quality Model- Qual2K version 2.11b8, developed by Chapra, was used. This model solves the Streeter–Phelps equation, proposing an analytical expression to relate the dissolved oxygen (DO) and biochemical oxygen demand (BOD5) variables. These variables were modeled for different critical scenarios of minimum flows in return periods of 5, 50, and 100 years, determining that the studied section of the Biobío river would have a high carrying capacity to not be affected by its organic matter pollution.



Water ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 88
Author(s):  
Xiamei Man ◽  
Chengwang Lei ◽  
Cayelan C. Carey ◽  
John C. Little

Many researchers use one-dimensional (1-D) and three-dimensional (3-D) coupled hydrodynamic and water-quality models to simulate water quality dynamics, but direct comparison of their relative performance is rare. Such comparisons may quantify their relative advantages, which can inform best practices. In this study, we compare two 1-year simulations in a shallow, eutrophic, managed reservoir using a community-developed 1-D model and a 3-D model coupled with the same water-quality model library based on multiple evaluation criteria. In addition, a verified bubble plume model is coupled with the 1-D and 3-D models to simulate the water temperature in four epilimnion mixing periods to further quantify the relative performance of the 1-D and 3-D models. Based on the present investigation, adopting a 1-D water-quality model to calibrate a 3-D model is time-efficient and can produce reasonable results; 3-D models are recommended for simulating thermal stratification and management interventions, whereas 1-D models may be more appropriate for simpler model setups, especially if field data needed for 3-D modeling are lacking.



Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1980
Author(s):  
Bushra Tasnim ◽  
Jalil A. Jamily ◽  
Xing Fang ◽  
Yangen Zhou ◽  
Joel S. Hayworth

In shallow lakes, water quality is mostly affected by weather conditions and some ecological processes which vary throughout the day. To understand and model diurnal-nocturnal variations, a deterministic, one-dimensional hourly lake water quality model MINLAKE2018 was modified from daily MINLAKE2012, and applied to five shallow lakes in Minnesota to simulate water temperature and dissolved oxygen (DO) over multiple years. A maximum diurnal water temperature variation of 11.40 °C and DO variation of 5.63 mg/L were simulated. The root-mean-square errors (RMSEs) of simulated hourly surface temperatures in five lakes range from 1.19 to 1.95 °C when compared with hourly data over 4–8 years. The RMSEs of temperature and DO simulations from MINLAKE2018 decreased by 17.3% and 18.2%, respectively, and Nash-Sutcliffe efficiency increased by 10.3% and 66.7%, respectively; indicating the hourly model performs better in comparison to daily MINLAKE2012. The hourly model uses variable hourly wind speeds to determine the turbulent diffusion coefficient in the epilimnion and produces more hours of temperature and DO stratification including stratification that lasted several hours on some of the days. The hourly model includes direct solar radiation heating to the bottom sediment that decreases magnitude of heat flux from or to the sediment.



Author(s):  
M. D. Bolt

Water quality sampling in Florida is acknowledged to be spatially and temporally variable. The rotational monitoring program that was created to capture data within the state’s thousands of miles of coastline and streams, and millions of acres of lakes, reservoirs, and ponds may be partly responsible for inducing the variability as an artifact. Florida’s new dissolved-oxygen-standard methodology will require more data to calculate a percent saturation. This additional data requirement’s impact can be seen when the new methodology is applied retrospectively to the historical collection. To understand how, where, and when the methodological change could alter the environmental quality narrative of state waters requires addressing induced bias from prior sampling events and behaviors. Here stream and coastal water quality data is explored through several modalities to maximize understanding and communication of the spatiotemporal relationships. Previous methodology and expected-retrospective calculations outside the regulatory framework are found to be significantly different, but dependent on the spatiotemporal perspective. Data visualization is leveraged to demonstrate these differences, their potential impacts on environmental narratives, and to direct further review and analysis.





Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3371
Author(s):  
Thomas P. Archdeacon ◽  
Tracy A. Diver ◽  
Justin K. Reale

Streamflow intermittency can reshape fish assemblages and present challenges to recovery of imperiled species. During streamflow intermittency, fish can be subjected to a variety of stressors, including exposure to crowding, high water temperatures, and low dissolved oxygen, resulting in sublethal effects or mortality. Rescue of fishes is often used as a conservation tool to mitigate the negative impacts of streamflow intermittency. The effectiveness of such actions is rarely evaluated. Here, we use multi-year water quality data collected from isolated pools during rescue of Rio Grande silvery minnow Hybognathus amarus, an endangered minnow. We examined seasonal and diel water quality patterns to determine if fishes are exposed to sublethal and critical water temperatures or dissolved oxygen concentrations during streamflow intermittency. Further, we determined survival of rescued Rio Grande silvery minnow for 3–5 weeks post-rescue. We found that isolated pool temperatures were much warmer (>40 °C in some pools) compared to upstream perennial flows, and had larger diel fluctuations, >10 °C compared to ~5 °C, and many pools had critically low dissolved oxygen concentrations. Survival of fish rescued from isolated pools during warmer months was <10%. Reactive conservation actions such as fish rescue are often costly, and in the case of Rio Grande silvery minnow, likely ineffective. Effective conservation of fishes threatened by streamflow intermittency should focus on restoring natural flow regimes that restore the natural processes under which fishes evolved.



Sign in / Sign up

Export Citation Format

Share Document