scholarly journals Integrated predictive artificial neural network fatigue endurance limit model for asphalt concrete pavements

2019 ◽  
Vol 46 (2) ◽  
pp. 114-123 ◽  
Author(s):  
Mayzan M. Isied ◽  
Mena I. Souliman

Asphalt endurance limit is a strain value if experienced by asphalt pavement layer, no accumulated damage will occur and is directly related to asphalt healing. Therefore, if the pavement experiences this value of strain, or lower, no fatigue damage would accumulate within that pavement section. Beam fatigue test data conducted under the NCHRP Project 9-44A were extracted and utilized to create an artificial neural network predictive model (ANN) to determine the endurance limit strain values for conventional asphalt concrete pavements. The developed ANN model architecture as well as how to utilize it to predict the endurance limit were demonstrated and discussed in detail. Also, a stand-alone equation that is capable in the prediction of the endurance limit strain value, separate from the ANN model environment, was derived utilizing the eclectic extraction approach. The model training and validation data included 934 beam fatigue laboratory data points, as extracted from NCHRP Project 9-44A report. The developed model was able to determine the endurance limit strain value as a function of the stiffness ratio, number of cycles to failure, initial stiffness and rest period, and had a reasonable coefficient of determination (R2) value, which indicates the reliability of both the developed ANN model and the stand-alone equation. Furthermore, a correlation between the endurance limit strain values, as predicted utilizing the generated regression model under the NCHRP project 944-A, and the endurance limit strain values predicted utilizing the stand-alone ANN derived equation was found with a high R2 value.

Author(s):  
Mayzan M. Isied ◽  
Mena I. Souliman ◽  
Waleed A. Zeiada ◽  
Nitish R. Bastola

Asphalt concrete healing is one of the important concepts related to flexible pavement structures. Fatigue endurance limit (FEL) is defined as the strain limit under which no damage will be accumulated in the pavement and is directly related to asphalt healing. Pavement section designed to handle a strain value equivalent to the endurance limit (EL) strain will be considered as a perpetual pavement. All four-point bending beam fatigue testing results from the NCHRP 944-A project were extracted and utilized in the development of artificial neural network (ANN) EL strain predictive model based on mixture volumetric properties and loading conditions. ANN model architecture, as well as the prediction process of the EL strain utilizing the generated model, were presented and explained. Furthermore, a stand-alone equation that predicts the EL strain value was extracted from the developed ANN model utilizing the eclectic approach. Moreover, the EL strain value was predicted utilizing the new equation and compared with the EL strain value predicted by other prediction models available in literature. A total of 705 beam fatigue lab test data points were utilized in model training and evaluation at ratios of 70%, 15%, and 15% for training, testing, and validation, respectively. The developed model is capable of predicting the EL strain value as a function of binder grade, temperature, air void content, asphalt content, SR, failure cycles number, and rest period. The reliability of the developed stand-alone equation and the ANN model was presented by reasonable coefficient of determination (R2) value and significance value (F).


Author(s):  
Mustafa Keskin ◽  
◽  
Murat Karacasu ◽  

Civil engineering science has evolved into the 21st century with concepts of recycling and sustainability. It is one of the most important goals of this century to create sustainable habitats by evaluating waste materials in building materials. This study aims to eliminate the boron waste dunes that have occurred and continue to occur in our country which has the world's largest boron reserves by using in road materials. Solid boron wastes obtained from the field were crushed and added to asphalt samples in certain ratios and the effect of Crushed Boron Waste (CBW) on asphalt samples were investigated. As a result of Marshall Design Method, it has been proved that boron wastes can be used in asphalt concrete within the specification limits. Besides, an artificial neural network (ANN) model was created for the evaluation of obtained data. As a result of Marshall Design Method, it has been proved that boron wastes can be used in asphalt concrete within the specification limits. Furthermore, examination of modelling and statistical analysis, mechanical performance of asphalt concrete samples with and without CBW addition has been predicted in noticeable manner. As a result of regression analysis, training and test sets r2 values are reached 0.95-0.91 for stability and 0.91-0.87 for flow values. Finally, a simulation was prepared with the created model and the effect of boron wastes on asphalt samples were examined in more detail.


2008 ◽  
Vol 35 (5) ◽  
pp. 500-510 ◽  
Author(s):  
Murat Cobaner ◽  
Galip Seckin ◽  
Ozgur Kisi

The assessment of backwater resulting from extra energy losses on flood flows caused by bridge constrictions is of vital interest in hydraulic engineering due to its importance in the design of waterways and management of flooding. Although many detailed methods for estimating bridge backwater have been developed, an initial estimate of the magnitude of bridge backwater using a practical model, such as the multiple linear regression (MLR) technique, has a crucial importance for rapid evaluation of flood damages upstream of the bridge structure. In the current study, first, two artificial neural network (ANN) models using the same amount of input data as that of an MLR approach were developed, and then the ability of these ANN models versus the MLR models was investigated for the initial assessment of bridge backwater, both models having been based on the comprehensive laboratory data of the Hydraulic Research Wallingford in UK. The comparison of the results by the MLR and the ANN approaches revealed that the ANN model gave better predictions than those of the MLR model when applied to these laboratory data. United States Geological Survey (USGS) field data were also used for the validation and comparison of these methods. The results showed that ANN approaches yielded more accurate results than those of the MLR models when applied to these field data including actual flood profiles through many bridges.


2015 ◽  
Vol 17 (4) ◽  
pp. 679-695 ◽  
Author(s):  
Ya Zhang ◽  
Jinhui Jeanne Huang ◽  
Liang Chen ◽  
Lan Qi

Yuqiao Reservoir is the potable water supply source for a city with a population of more than 14 million. Eutrophication has threatened the reliability of drinking water supplies and, therefore, the forecasting systems for eutrophication and sound management become urgent needs. Water temperature and total phosphorus have long been considered as the major influencing factors to eutrophication. This study used the artificial neural network (ANN) model to forecast three water quality variables including water temperature, total phosphorus, and chlorophyll-a in Yuqiao Reservoir. Two weeks in advance for forecasting was chosen to ensure a sufficient preparation response time for algae outbreak. The Nash–Sutcliffe coefficient of efficiency (R2) was between 0.84 and 0.99 for the training and over-fitting test data sets, while it was between 0.59 and 0.99 for the validation data set. To better respond to the algae outbreak, a number of management scenarios formed by orthogonal experimental design were modeled to assess the responses of chlorophyll-a and an optimal management scenario was identified, which can reduce chlorophyll-a by 23.8%. This study demonstrates that ANN model is potentially useful for forecasting eutrophication up to 2 weeks in advance. It also provides valuable information for the sound management of nutrient loads to reservoirs.


Author(s):  
YOGESH SINGH ◽  
ARVINDER KAUR ◽  
PRADEEP KUMAR BHATIA ◽  
OMPRAKASH SANGWAN

Software effort estimation is an important and integral part of software development life cycle of any project. However, cost, time and manpower estimation is required prior to implementation of the project. The objective of this work is to explore the possibilities of application of Artificial Neural Network (ANN) as a tool for predicting software development effort. We proposed an ANN model for predicting software development effort. A multilayer feed forward network is trained using back-propogation algorithm and demonstrated to be suitable. This study used the training and validation data, which is randomly selected from the data repository of 650 projects [8]. The experimental results indicate that the Mean Absolute Relative Error (MARE) is 0.261 of ANN model and shows that ANN model is a competitive model for predicting software development effort.


2019 ◽  
Vol 12 (3) ◽  
pp. 248-261
Author(s):  
Baomin Wang ◽  
Xiao Chang

Background: Angular contact ball bearing is an important component of many high-speed rotating mechanical systems. Oil-air lubrication makes it possible for angular contact ball bearing to operate at high speed. So the lubrication state of angular contact ball bearing directly affects the performance of the mechanical systems. However, as bearing rotation speed increases, the temperature rise is still the dominant limiting factor for improving the performance and service life of angular contact ball bearings. Therefore, it is very necessary to predict the temperature rise of angular contact ball bearings lubricated with oil-air. Objective: The purpose of this study is to provide an overview of temperature calculation of bearing from many studies and patents, and propose a new prediction method for temperature rise of angular contact ball bearing. Methods: Based on the artificial neural network and genetic algorithm, a new prediction methodology for bearings temperature rise was proposed which capitalizes on the notion that the temperature rise of oil-air lubricated angular contact ball bearing is generally coupling. The influence factors of temperature rise in high-speed angular contact ball bearings were analyzed through grey relational analysis, and the key influence factors are determined. Combined with Genetic Algorithm (GA), the Artificial Neural Network (ANN) model based on these key influence factors was built up, two groups of experimental data were used to train and validate the ANN model. Results: Compared with the ANN model, the ANN-GA model has shorter training time, higher accuracy and better stability, the output of ANN-GA model shows a good agreement with the experimental data, above 92% of bearing temperature rise under varying conditions can be predicted using the ANNGA model. Conclusion: A new method was proposed to predict the temperature rise of oil-air lubricated angular contact ball bearings based on the artificial neural network and genetic algorithm. The results show that the prediction model has good accuracy, stability and robustness.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhonghui Thong ◽  
Jolena Ying Ying Tan ◽  
Eileen Shuzhen Loo ◽  
Yu Wei Phua ◽  
Xavier Liang Shun Chan ◽  
...  

AbstractRegression models are often used to predict age of an individual based on methylation patterns. Artificial neural network (ANN) however was recently shown to be more accurate for age prediction. Additionally, the impact of ethnicity and sex on our previous regression model have not been studied. Furthermore, there is currently no age prediction study investigating the lower limit of input DNA at the bisulfite treatment stage prior to pyrosequencing. Herein, we evaluated both regression and ANN models, and the impact of ethnicity and sex on age prediction for 333 local blood samples using three loci on the pyrosequencing platform. Subsequently, we trained a one locus-based ANN model to reduce the amount of DNA used. We demonstrated that the ANN model has a higher accuracy of age prediction than the regression model. Additionally, we showed that ethnicity did not affect age prediction among local Chinese, Malays and Indians. Although the predicted age of males were marginally overestimated, sex did not impact the accuracy of age prediction. Lastly, we present a one locus, dual CpG model using 25 ng of input DNA that is sufficient for forensic age prediction. In conclusion, the two ANN models validated would be useful for age prediction to provide forensic intelligence leads.


Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1448
Author(s):  
Nam-Gyu Lim ◽  
Jae-Yeol Kim ◽  
Seongjun Lee

Battery applications, such as electric vehicles, electric propulsion ships, and energy storage systems, are developing rapidly, and battery management issues are gaining attention. In this application field, a battery system with a high capacity and high power in which numerous battery cells are connected in series and parallel is used. Therefore, research on a battery management system (BMS) to which various algorithms are applied for efficient use and safe operation of batteries is being conducted. In general, maintenance/replacement of multi-series/multiple parallel battery systems is only possible when there is no load current, or the entire system is shut down. However, if the circulating current generated by the voltage difference between the newly added battery and the existing battery pack is less than the allowable current of the system, the new battery can be connected while the system is running, which is called hot swapping. The circulating current generated during the hot-swap operation is determined by the battery’s state of charge (SOC), the parallel configuration of the battery system, temperature, aging, operating point, and differences in the load current. Therefore, since there is a limit to formulating a circulating current that changes in size according to these various conditions, this paper presents a circulating current estimation method, using an artificial neural network (ANN). The ANN model for estimating the hot-swap circulating current is designed for a 1S4P lithium battery pack system, consisting of one series and four parallel cells. The circulating current of the ANN model proposed in this paper is experimentally verified to be able to estimate the actual value within a 6% error range.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Abolghasem Daeichian ◽  
Rana Shahramfar ◽  
Elham Heidari

Abstract Lime is a significant material in many industrial processes, including steelmaking by blast furnace. Lime production through rotary kilns is a standard method in industries, yet it has depreciation, high energy consumption, and environmental pollution. A model of the lime production process can help to not only increase our knowledge and awareness but also can help reduce its disadvantages. This paper presents a black-box model by Artificial Neural Network (ANN) for the lime production process considering pre-heater, rotary kiln, and cooler parameters. To this end, actual data are collected from Zobahan Isfahan Steel Company, Iran, which consists of 746 data obtained in a duration of one year. The proposed model considers 23 input variables, predicting the amount of produced lime as an output variable. The ANN parameters such as number of hidden layers, number of neurons in each layer, activation functions, and training algorithm are optimized. Then, the sensitivity of the optimum model to the input variables is investigated. Top-three input variables are selected on the basis of one-group sensitivity analysis and their interactions are studied. Finally, an ANN model is developed considering the top-three most effective input variables. The mean square error of the proposed models with 23 and 3 inputs are equal to 0.000693 and 0.004061, respectively, which shows a high prediction capability of the two proposed models.


Sign in / Sign up

Export Citation Format

Share Document