Detection of Asian carp DNA as part of a Great Lakes basin-wide surveillance program

2013 ◽  
Vol 70 (4) ◽  
pp. 522-526 ◽  
Author(s):  
Christopher L. Jerde ◽  
W. Lindsay Chadderton ◽  
Andrew R. Mahon ◽  
Mark A. Renshaw ◽  
Joel Corush ◽  
...  

Environmental DNA (eDNA) is a sensitive technique for early detection of rare species, including bighead (Hypophthalmichthys nobilis) and silver (Hypophthalmichthys molitrix) carp, which are incipient invaders of the Great Lakes. Since 2009, 2822 samples have been collected from the Great Lakes basin to delimit the extent of Asian carp incursions. Samples collected in the Chicago Area Waterway System and in the western basin of Lake Erie indicate the presence of Asian carp DNA in the Great Lakes. These positive eDNA detections are within 6 and 4 km from where bighead carps were recovered in Lake Calumet, near Lake Michigan (2010), and from Sandusky Bay, Lake Erie (2000), respectively. To implement a Great Lakes surveillance plan for protecting imperiled species and reducing damages from invasive species, federal, state, and provincial agencies will need to cooperatively plan and implement a surveillance program that employs the unique strengths of multiple sampling tools, including eDNA methods.

Forests ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 430 ◽  
Author(s):  
Ronald S. Zalesny ◽  
Andrej Pilipović ◽  
Elizabeth R. Rogers ◽  
Joel G. Burken ◽  
Richard A. Hallett ◽  
...  

Poplar remediation systems are ideal for reducing runoff, cleaning groundwater, and delivering ecosystem services to the North American Great Lakes and globally. We used phyto-recurrent selection (PRS) to establish sixteen phytoremediation buffer systems (phyto buffers) (buffer groups: 2017 × 6; 2018 × 5; 2019 × 5) throughout the Lake Superior and Lake Michigan watersheds comprised of twelve PRS-selected clones each year. We tested for differences in genotypes, environments, and their interactions for health, height, diameter, and volume from ages one to four years. All trees had optimal health. Mean first-, second-, and third-year volume ranged from 71 ± 26 to 132 ± 39 cm3; 1440 ± 575 to 5765 ± 1132 cm3; and 8826 ± 2646 to 10,530 ± 2110 cm3, respectively. Fourth-year mean annual increment of 2017 buffer group trees ranged from 1.1 ± 0.7 to 7.8 ± 0.5 Mg ha−1 yr−1. We identified generalist varieties with superior establishment across a broad range of buffers (‘DM114’, ‘NC14106’, ‘99038022’, ‘99059016’) and specialist clones uniquely adapted to local soil and climate conditions (‘7300502’, ‘DN5’, ‘DN34’, ‘DN177’, ‘NM2’, ‘NM5’, ‘NM6’). Using generalists and specialists enhances the potential for phytoremediation best management practices that are geographically robust, being regionally designed yet globally relevant.


2009 ◽  
Vol 71 (3) ◽  
pp. 397-408 ◽  
Author(s):  
Andy Breckenridge ◽  
Thomas C. Johnson

AbstractBetween 10,500 and 9000 cal yr BP, δ18O values of benthic ostracodes within glaciolacustrine varves from Lake Superior range from − 18 to − 22‰ PDB. In contrast, coeval ostracode and bivalve records from the Lake Huron and Lake Michigan basins are characterized by extreme δ18O variations, ranging from values that reflect a source that is primarily glacial (∼ − 20‰ PDB) to much higher values characteristic of a regional meteoric source (∼ − 5‰ PDB). Re-evaluated age models for the Huron and Michigan records yield a more consistent δ18O stratigraphy. The striking feature of these records is a sharp drop in δ18O values between 9400 and 9000 cal yr BP. In the Huron basin, this low δ18O excursion was ascribed to the late Stanley lowstand, and in the Lake Michigan basin to Lake Agassiz flooding. Catastrophic flooding from Lake Agassiz is likely, but a second possibility is that the low δ18O excursion records the switching of overflow from the Lake Superior basin from an undocumented northern outlet back into the Great Lakes basin. Quantifying freshwater fluxes for this system remains difficult because the benthic ostracodes in the glaciolacustrine varves of Lake Superior and Lake Agassiz may not record the average δ18O value of surface water.


2007 ◽  
Vol 59 (2-3) ◽  
pp. 187-210 ◽  
Author(s):  
C.F. Michael Lewis ◽  
Steve M. Blasco ◽  
Pierre L. Gareau

Abstract In the Great Lakes region, the vertical motion of crustal rebound since the last glaciation has decelerated with time, and is described by exponential decay constrained by observed warping of strandlines of former lakes. A composite isostatic response surface relative to an area southwest of Lake Michigan beyond the limit of the last glacial maximum was prepared for the complete Great Lakes watershed at 10.6 ka BP (12.6 cal ka BP). Uplift of sites computed using values from the response surface facilitated the transformation of a digital elevation model of the present Great Lakes basins to represent the paleogeography of the watershed at selected times. Similarly, the original elevations of radiocarbon-dated geomorphic and stratigraphic indicators of former lake levels were reconstructed and plotted against age to define lake level history. A comparison with the independently computed basin outlet paleo-elevations reveals a phase of severely reduced water levels and hydrologically-closed lakes below overflow outlets between 7.9 and 7.0 ka BP (8.7 and 7.8 cal ka BP) in the Huron-Michigan basin. Severe evaporative draw-down is postulated to result from the early Holocene dry climate when inflows of meltwater from the upstream Agassiz basin began to bypass the upper Great Lakes basin.


1986 ◽  
Vol 43 (2) ◽  
pp. 407-415 ◽  
Author(s):  
Claire L. Schelske ◽  
Eugene F. Stoermer ◽  
Gary L. Fahnenstiel ◽  
Mark Haibach

Our hypothesis that silica (Si) depletion in Lake Michigan and the severe Si depletion that characterizes the lower Great Lakes were induced by increased phosphorus (P) inputs was supported by bioassay experiments showing increased Si uptake by diatoms with relatively small P enrichments. We propose that severe Si depletion (Si concentrations being reduced to ≤0.39 mg SiO2∙L−1 prior to thermal stratification) results when P levels are increased to the extent that increased diatom production reduces Si concentrations to limiting levels during the thermally mixed period. Large P enrichments such as those that characterized the eastern and central basis of Lake Erie and Lake Ontario in the early 1970s are necessary to produce severe Si depletion. It is clear that severe Si depletion in the lower lakes was produced by P enrichment because inflowing waters from Lake Huron have smaller P concentrations and larger Si concentrations than the outflowing waters of either Lake Erie or Lake Ontario. Severe Si depletion probably began in the 1940s or 1950s as the result of increased P loads from expanded sewering of an increasing urban population and the introduction of phosphate detergents. The model proposed for biogeochemical Si depletion is consistent with previous findings of high rates of internal recycling because, under steady-state conditions for Si inputs, any increase in diatom production will produce an increase in permanent sedimentation of biogenic Si provided some fraction of the increased biogenic Si production is not recycled or unless there is a compensating increase in dissolution of diatoms.


2000 ◽  
Vol 1 (4) ◽  
pp. 1
Author(s):  
Thorndike Saville, Jr.

The General Investigations program of the Beach Erosion Board comprises investigations, regional rather than local in scope, designed to improve, simplify, and expedite the solution of local problems, by giving a compilation of all existing data pertinent to shore processes in the particular region. As a first step in the compilation of these data, a study of wave and lake level conditions on the Great Lakes is being made. The results of such studies for Lake Michigan, Lake Erie, and Lake Ontario have recently been completed and published as Technical Memorandums of the Beach Erosion Board (Saville, 1953).


Author(s):  
Kassandra Smrekar ◽  
Shingo Tanaka ◽  
Lavie Williams

A recent threat posed to the Great Lakes and adjoining waterways is the Asian Carp.  This large bodied fish originated from Asia and was first imported to the North American between 1960 to 1970. Their migration northward through the Mississippi River eliminated native freshwater species through competition of habitat and food resources. It is imperative to focus on the potential invasion of the Asian Carp because the risk assessment is high that the carp would eliminate all native species.  Currently the carp are at the border of entering Lake Michigan, which would then provide access to the rest of the freshwater regions in the surrounding area. Ultimately, the loss of lake biodiversity is the fundamental problem and is coupled with economic issues.  Bowfin Environmental Consulting INC and various invasive species awareness programs have been utilized to provide guidance on undertaking a project that involves an aggressive invasive species.  The challenge faced will be to determine a method in which to prevent the invasion of Asian Carp.  Examining their migration patterns, importation laws of live fish, and the policies of invasive species, will provide insight on the approach that should be taken to eliminate the threat of Asian Carp.  It is also important to analyze which native species are most susceptible to becoming extinct.  Overall, the intention is not only to increase government, scientific, and public awareness of this issue, but also to provide methods that can be implemented to prevent and eradicate the spread of Asian Carp in North American waterways.


2019 ◽  
Vol 11 (12) ◽  
pp. 1448 ◽  
Author(s):  
Son ◽  
Wang

Satellite ocean color products from the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP) since 2012 and in situ water turbidity measurements from the U.S. Environmental Protection Agency’s Great Lakes Environmental Database System are used to develop a water turbidity algorithm for satellite ocean color applications in the Great Lakes for water quality monitoring and assessments. Results show that the proposed regional algorithm can provide reasonably accurate estimations of water turbidity from satellite observations in the Great Lakes. Therefore, VIIRS-derived water turbidity data are used to investigate spatial and temporal variations in water turbidity for the entirety of the Great Lakes. Water turbidity values are overall the highest in Lake Erie, moderate in Lake Ontario, and relatively low in lakes Superior, Michigan, and Huron. Significantly high values in water turbidity appear in the nearshore regions, particularly in Thunder Bay (Lake Superior), Green Bay (Lake Michigan), and Saginaw Bay (Lake Huron). Seasonal patterns of water turbidity are generally similar in lakes Superior, Michigan, Huron, and Ontario, showing relatively high values in the spring and autumn months and lows in the winter season, while the seasonal pattern in Lake Erie is apparently different from the other lakes, with the highest value in the winter season and the lowest in the summer season. A strong interannual variability in water turbidity is shown in the time series of the VIIRS-derived water turbidity data for most of the lakes.


Sign in / Sign up

Export Citation Format

Share Document