Approaches for estimating stand-level volume using terrestrial laser scanning in a single-scan mode

2014 ◽  
Vol 44 (6) ◽  
pp. 666-676 ◽  
Author(s):  
Rasmus Astrup ◽  
Mark J. Ducey ◽  
Aksel Granhus ◽  
Tim Ritter ◽  
Nikolas von Lüpke

The most efficient way to obtain stand inventory data with terrestrial laser systems (TLS) is with the single-scan mode, which involves taking one scan at a single point. With a single-scan setup, there will be a nondetection of trees in a plot and the representation of the individual trees will be incomplete. We explore how stand-level volume estimates, based on the single-scan mode, perform compared with standard inventory estimates. We base our study on 166 plots in 12 mature stands dominated by Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies L. Karst) in southern Norway. First, we compare individual-tree volume estimates from TLS with estimates from volume functions and measurements from harvesters. We show that individual-tree volumes can be estimated with high precision and accuracy with TLS in single-scan mode. Secondly, we test three approaches for correction of nondetection relying on model-based estimates of the detection probability obtained by point transect sampling estimators. We show that all three approaches adjust for nondetection and yield stand-level volume estimates that are similar to those obtained by fixed-area sampling. In conclusion, our results indicate that stand-level volume estimates, based on single-scan mode TLS data, perform well compared with standard inventory estimates.

Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 550
Author(s):  
Dandan Xu ◽  
Haobin Wang ◽  
Weixin Xu ◽  
Zhaoqing Luan ◽  
Xia Xu

Accurate forest biomass estimation at the individual tree scale is the foundation of timber industry and forest management. It plays an important role in explaining ecological issues and small-scale processes. Remotely sensed images, across a range of spatial and temporal resolutions, with their advantages of non-destructive monitoring, are widely applied in forest biomass monitoring at global, ecoregion or community scales. However, the development of remote sensing applications for forest biomass at the individual tree scale has been relatively slow due to the constraints of spatial resolution and evaluation accuracy of remotely sensed data. With the improvements in platforms and spatial resolutions, as well as the development of remote sensing techniques, the potential for forest biomass estimation at the single tree level has been demonstrated. However, a comprehensive review of remote sensing of forest biomass scaled at individual trees has not been done. This review highlights the theoretical bases, challenges and future perspectives for Light Detection and Ranging (LiDAR) applications of individual trees scaled to whole forests. We summarize research on estimating individual tree volume and aboveground biomass (AGB) using Terrestrial Laser Scanning (TLS), Airborne Laser Scanning (ALS), Unmanned Aerial Vehicle Laser Scanning (UAV-LS) and Mobile Laser Scanning (MLS, including Vehicle-borne Laser Scanning (VLS) and Backpack Laser Scanning (BLS)) data.


2021 ◽  
Vol 13 (12) ◽  
pp. 2297
Author(s):  
Jonathon J. Donager ◽  
Andrew J. Sánchez Meador ◽  
Ryan C. Blackburn

Applications of lidar in ecosystem conservation and management continue to expand as technology has rapidly evolved. An accounting of relative accuracy and errors among lidar platforms within a range of forest types and structural configurations was needed. Within a ponderosa pine forest in northern Arizona, we compare vegetation attributes at the tree-, plot-, and stand-scales derived from three lidar platforms: fixed-wing airborne (ALS), fixed-location terrestrial (TLS), and hand-held mobile laser scanning (MLS). We present a methodology to segment individual trees from TLS and MLS datasets, incorporating eigen-value and density metrics to locate trees, then assigning point returns to trees using a graph-theory shortest-path approach. Overall, we found MLS consistently provided more accurate structural metrics at the tree- (e.g., mean absolute error for DBH in cm was 4.8, 5.0, and 9.1 for MLS, TLS and ALS, respectively) and plot-scale (e.g., R2 for field observed and lidar-derived basal area, m2 ha−1, was 0.986, 0.974, and 0.851 for MLS, TLS, and ALS, respectively) as compared to ALS and TLS. While TLS data produced estimates similar to MLS, attributes derived from TLS often underpredicted structural values due to occlusion. Additionally, ALS data provided accurate estimates of tree height for larger trees, yet consistently missed and underpredicted small trees (≤35 cm). MLS produced accurate estimates of canopy cover and landscape metrics up to 50 m from plot center. TLS tended to underpredict both canopy cover and patch metrics with constant bias due to occlusion. Taking full advantage of minimal occlusion effects, MLS data consistently provided the best individual tree and plot-based metrics, with ALS providing the best estimates for volume, biomass, and canopy cover. Overall, we found MLS data logistically simple, quickly acquirable, and accurate for small area inventories, assessments, and monitoring activities. We suggest further work exploring the active use of MLS for forest monitoring and inventory.


Iraq ◽  
1994 ◽  
Vol 56 ◽  
pp. 123-133 ◽  
Author(s):  
Pauline Albenda

The Brooklyn Museum houses twelve stone slabs with carved decoration from the Northwest Palace of Ashurnasirpal II. The motif of a stylized tree — the so-called Sacred Tree (see Figs. 1, 4, 6) — appears on seven of those slabs which come from rooms F, I, L, S, T of the ninth century palace at Nimrud. These tree renderings are representative of the sacred tree-type found in ten rooms of the royal residence and the west wing. Approximately 96 sacred trees, in two-register arrangement, appeared on the pictorial decorations in room I; the same motif occurred about 75 times in one-register arrangement on the reliefs of the other rooms. The abundance of the sacred tree motif on the wall decorations of the Northwest Palace attests to the significance of this plant. Its design deserves investigation; in Layard's words, “the tree, evidently a sacred symbol, is elaborately and tastefully formed.”In his study of the Ashurnasirpal II reliefs in American collections, Stearns did not attempt to list the sacred trees, because “variations in the sacred tree occur only in minor details,” and “the tree in itself is rarely useful in identifying the location of the reliefs.” These statements make clear Stearns' belief that the sacred trees were nearly alike. Other scholars, notably Weidner and Reade, have pointed out that on a number of slabs now in American and European museums are carvings of matching half trees, therefore indicating that when paired, these trees belonged to adjoining slabs originally. In trying to match half trees, one finds that individual sacred trees do differ in the rendering of specific details. Bleibtreu, in her analysis of the sacred tree-type, lists three variants of the flower found on the palmette-garland framing the individual tree on three sides. The present author, after examining the sacred trees carved on the slabs in The Brooklyn Museum, concludes that the design of the tree-type is more varied than heretofore presumed, and that its construction is more complex than indicated in previous descriptions of the subjects. An analysis of the Assyrian sacred tree-type may lead to possible conclusions regarding its intended image: a stylized palm tree, a cult object, an emblem of vegetation or “tree of life”, an imperial symbol, or a combination of those forms. In addition, one may consider to what extent the rendering of individual trees was the consequence of artistic inventiveness.


2020 ◽  
Vol 12 (17) ◽  
pp. 2725
Author(s):  
Qixia Man ◽  
Pinliang Dong ◽  
Xinming Yang ◽  
Quanyuan Wu ◽  
Rongqing Han

Urban vegetation extraction is very important for urban biodiversity assessment and protection. However, due to the diversity of vegetation types and vertical structure, it is still challenging to extract vertical information of urban vegetation accurately with single remotely sensed data. Airborne light detection and ranging (LiDAR) can provide elevation information with high-precision, whereas hyperspectral data can provide abundant spectral information on ground objects. The complementary advantages of LiDAR and hyperspectral data could extract urban vegetation much more accurately. Therefore, a three-dimensional (3D) vegetation extraction workflow is proposed to extract urban grasses and trees at individual tree level in urban areas using airborne LiDAR and hyperspectral data. The specific steps are as follows: (1) airborne hyperspectral and LiDAR data were processed to extract spectral and elevation parameters, (2) random forest classification method and object-based classification method were used to extract the two-dimensional distribution map of urban vegetation, (3) individual tree segmentation was conducted on a canopy height model (CHM) and point cloud data separately to obtain three-dimensional characteristics of urban trees, and (4) the spatial distribution of urban vegetation and the individual tree delineation were assessed by validation samples and manual delineation results. The results showed that (1) both the random forest classification method and object-based classification method could extract urban vegetation accurately, with accuracies above 99%; (2) the watershed segmentation method based on the CHM could extract individual trees correctly, except for the small trees and the large tree groups; and (3) the individual tree segmentation based on point cloud data could delineate individual trees in three-dimensional space, which is much better than CHM segmentation as it can preserve the understory trees. All the results suggest that two- and three-dimensional urban vegetation extraction could play a significant role in spatial layout optimization and scientific management of urban vegetation.


2021 ◽  
Vol 11 ◽  
Author(s):  
David Pont ◽  
Heidi S. Dungey ◽  
Mari Suontama ◽  
Grahame T. Stovold

Phenotyping individual trees to quantify interactions among genotype, environment, and management practices is critical to the development of precision forestry and to maximize the opportunity of improved tree breeds. In this study we utilized airborne laser scanning (ALS) data to detect and characterize individual trees in order to generate tree-level phenotypes and tree-to-tree competition metrics. To examine our ability to account for environmental variation and its relative importance on individual-tree traits, we investigated the use of spatial models using ALS-derived competition metrics and conventional autoregressive spatial techniques. Models utilizing competition covariate terms were found to quantify previously unexplained phenotypic variation compared with standard models, substantially reducing residual variance and improving estimates of heritabilities for a set of operationally relevant traits. Models including terms for spatial autocorrelation and competition performed the best and were labelled ACE (autocorrelation-competition-error) models. The best ACE models provided statistically significant reductions in residuals ranging from −65.48% for tree height (H) to −21.03% for wood stiffness (A), and improvements in narrow sense heritabilities from 38.64% for H to 14.01% for A. Individual tree phenotyping using an ACE approach is therefore recommended for analyses of research trials where traits are susceptible to spatial effects.


Forests ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 148 ◽  
Author(s):  
Marta Fernández-Álvarez ◽  
Julia Armesto ◽  
Juan Picos

This paper describes a methodology using LiDAR point clouds with an ultra-high resolution in the characterization of forest fuels for further wildfire prevention and management. Biomass management strips were defined in three case studies using a particular Spanish framework. The data were acquired through a UAV platform. The proposed methodology allows for the detection, measurement and characterization of individual trees, as well as the analysis of shrubs. The individual tree segmentation process employed a canopy height model, and shrub cover LiDAR-derived models were used to characterize the vegetation in the strips. This way, the verification of the geometric legal restrictions was performed automatically and objectively using decision trees and GIS tools. As a result, priority areas, where wildfire prevention efforts should be concentrated in order to control wildfires, can be identified.


2020 ◽  
Vol 12 (6) ◽  
pp. 942 ◽  
Author(s):  
Maria Rosaria De Blasiis ◽  
Alessandro Di Benedetto ◽  
Margherita Fiani

The surface conditions of road pavements, including the occurrence and severity of distresses present on the surface, are an important indicator of pavement performance. Periodic monitoring and condition assessment is an essential requirement for the safety of vehicles moving on that road and the wellbeing of people. The traditional characterization of the different types of distress often involves complex activities, sometimes inefficient and risky, as they interfere with road traffic. The mobile laser systems (MLS) are now widely used to acquire detailed information about the road surface in terms of a three-dimensional point cloud. Despite its increasing use, there are still no standards for the acquisition and processing of the data collected. The aim of our work was to develop a procedure for processing the data acquired by MLS, in order to identify the localized degradations that mostly affect safety. We have studied the data flow and implemented several processing algorithms to identify and quantify a few types of distresses, namely potholes and swells/shoves, starting from very dense point clouds. We have implemented data processing in four steps: (i) editing of the point cloud to extract only the points belonging to the road surface, (ii) determination of the road roughness as deviation in height of every single point of the cloud with respect to the modeled road surface, (iii) segmentation of the distress (iv) computation of the main geometric parameters of the distress in order to classify it by severity levels. The results obtained by the proposed methodology are promising. The procedures implemented have made it possible to correctly segmented and identify the types of distress to be analyzed, in accordance with the on-site inspections. The tests carried out have shown that the choice of the values of some parameters to give as input to the software is not trivial: the choice of some of them is based on considerations related to the nature of the data, for others, it derives from the distress to be segmented. Due to the different possible configurations of the various distresses it is better to choose these parameters according to the boundary conditions and not to impose default values. The test involved a 100-m long urban road segment, the surface of which was measured with an MLS installed on a vehicle that traveled the road at 10 km/h.


2015 ◽  
Vol 77 (26) ◽  
Author(s):  
Nurliyana Izzati Ishak ◽  
Md Afif Abu Bakar ◽  
Muhammad Zulkarnain Abdul Rahman ◽  
Abd Wahid Rasib ◽  
Kasturi Devi Kanniah ◽  
...  

This paper presents a novel non-destructive approach for individual tree stem and branch biomass estimation using terrestrial laser scanning data. The study area is located at the Royal Belum Reserved Forest area, Gerik, Perak. Each forest plot was designed with a circular shape and contains several scanning locations to ensure good visibility of each tree. Unique tree signage was located on trees with diameter at breast height (DBH) of 10cm and above.  Extractions of individual trees were done manually and the matching process with the field collected tree properties were relied on the tree signage and tree location as collected by total station. Individual tree stems were reconstructed based on cylinder models from which the total stem volume was calculated. Biomass of individual tree stems was calculated by multiplying stem volume with specific wood density. Biomass of individual was estimated using similar concept of tree stem with the volume estimated from alpha-hull shape. The root mean squared errors (RMSE) of estimated biomass are 50.22kg and 27.20kg for stem and branch respectively. 


Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5555 ◽  
Author(s):  
Ying Quan ◽  
Mingze Li ◽  
Zhen Zhen ◽  
Yuanshuo Hao ◽  
Bin Wang

Unmanned aerial vehicle (UAV) laser scanning, as an emerging form of near-ground light detection and ranging (LiDAR) remote sensing technology, is widely used for crown structure extraction due to its flexibility, convenience, and high point density. Herein, we evaluated the feasibility of using a low-cost UAV-LiDAR system to extract the fine-scale crown profile of Larix olgensis. Specifically, individual trees were isolated from LiDAR point clouds and then stratified from the point clouds of segmented individual tree crowns at 0.5 m intervals to obtain the width percentiles of each layer as profile points. Four equations (the parabola, Mitscherlich, power, and modified beta equations) were then applied to model the profiles of the entire and upper crown. The results showed that a region-based hierarchical cross-section analysis algorithm can successfully delineate 77.4% of the field-measured trees in high-density (>2400 trees/ha) forest stands. The crown profile generated with the 95th width percentile was adequate when compared with the predicted value of the existing field-based crown profile model (the Pearson correlation coefficient (ρ) was 0.864, root mean square error (RMSE) = 0.3354 m). The modified beta equation yielded slightly better results than the other equations for crown profile fitting and explained 85.9% of the variability in the crown radius for the entire crown and 87.8% of this variability for the upper crown. Compared with the cone and 3D convex hull volumes, the crown volumes predicted by our profile models had significantly smaller errors. The results revealed that the crown profile can be well described by using UAV-LiDAR, providing a novel way to obtain crown profile information without destructive sampling and showing the potential of the use of UAV-LiDAR in future forestry investigations and monitoring.


Sign in / Sign up

Export Citation Format

Share Document