Interspecific competition limits the realized niche ofFraxinus nigraalong a waterlogging gradient

2018 ◽  
Vol 48 (11) ◽  
pp. 1292-1301 ◽  
Author(s):  
Christopher E. Looney ◽  
Anthony W. D’Amato ◽  
Shawn Fraver ◽  
Brian J. Palik ◽  
Lee E. Frelich

Gradient studies of wetland forests have inferred that competition from upland tree species confines waterlogging-tolerant tree species to hydric environments. Little is known, however, about competition effects on individual-tree growth along stress gradients in wetland forests. We investigated tree growth and competition in mixed-species stands representing a waterlogging stress gradient in Fraxinus nigra Marsh. (black ash) forests in Minnesota, USA. Using competition indices, we examined how F. nigra basal area increment (BAI) responded to competition along the gradient and whether competition was size-asymmetric (as for light) or size-symmetric (as for soil resources). We modeled spatial distributions of F. nigra and associated tree species to assess how variation in species mixtures influenced competition. We found that although F. nigra BAI did not significantly differ with variations in site moisture, the importance of competition decreased as waterlogging stress increased. Competition across the gradient was primarily size-asymmetric (for light). Variation in species mixtures along the gradient was an important influence on competition. Some segregation of tree species occurred at all but the most upland site, where waterlogging stress was lowest and evidence of competition was greatest, confirming that competition from upland tree species confines F. nigra and potentially other waterlogging-tolerant species to hydric environments.

2010 ◽  
Vol 40 (5) ◽  
pp. 843-849 ◽  
Author(s):  
John B. Bradford ◽  
Anthony W. D’Amato ◽  
Brian J. Palik ◽  
Shawn Fraver

Growth dominance is a relatively new, simple, quantitative metric of within-stand individual tree growth patterns, and is defined as positive when larger trees in the stand display proportionally greater growth than smaller trees, and negative when smaller trees display proportionally greater growth than larger trees. We examined long-term silvicultural experiments in red pine ( Pinus resinosa Ait.) to characterize how stand age, thinning treatments (thinned from above, below, or both), and stocking levels (residual basal area) influence stand-level growth dominance through time. In stands thinned from below or from both above and below, growth dominance was not significantly different from zero at any age or stocking level. Growth dominance in stands thinned from above trended from negative at low stocking levels to positive at high stocking levels and was positive in young stands. Growth dominance in unthinned stands was positive and increased with age. These results suggest that growth dominance provides a useful tool for assessing the efficacy of thinning treatments designed to reduce competition between trees and promote high levels of productivity across a population, particularly among crop trees.


2014 ◽  
Vol 44 (9) ◽  
pp. 1051-1057 ◽  
Author(s):  
Phillip van Mantgem ◽  
Adrian Das

Thinning treatments to accelerate coastal redwood forest stand development are in wide application, but managers have yet to identify prescriptions that might best promote Sequoia sempervirens (Lamb. ex D. Don) Endl. (redwood) growth. The creation of successful thinning prescriptions would be aided by identifying the underlying mechanisms governing how individual tree growth responds to competitive environments in coastal redwood forests. We created a spatially explicit individual-based model of tree competition and growth parameterized using surveys of upland redwood forests at Redwood National Park, California. We modeled competition for overstory trees (stems ≥ 20 cm stem diameter at breast height, 1.37 m (dbh)) as growth reductions arising from sizes, distances, and species identity of competitor trees. Our model explained up to half of the variation in individual tree growth, suggesting that neighborhood crowding is an important determinant of growth in this forest type. We used our model to simulate the effects of novel thinning prescriptions (e.g., 40% stand basal area removal) for redwood forest restoration, concluding that these treatments could lead to substantial growth releases, particularly for S. sempervirens. The results of this study, along with continued improvements to our model, will help to determine spacing and species composition that best encourage growth.


2008 ◽  
Vol 32 (4) ◽  
pp. 173-183 ◽  
Author(s):  
John Paul McTague ◽  
David O'Loughlin ◽  
Joseph P. Roise ◽  
Daniel J. Robison ◽  
Robert C. Kellison

Abstract A system of stand level and individual tree growth-and-yield models are presented for southern hardwoods. These models were developed from numerous permanent growth-and-yield plots established across 13 states in the US South on 9 site types, in even-aged (age classes from 20 to 60 years), fully stocked, naturally regenerated mixed hardwood and mixed hardwood-pine stands. Nested plots (⅕ and ac) were remeasured at 5-year intervals. The system of permanent plots was established and maintained by private and public members in the North Carolina State University Hardwood Research Cooperative. Stand level models are presented for dominant height, survival, basal area prediction and projection, and the ingrowth component. Individual tree diameter growth and tree height models were constructed for the most common species: sweetgum, tupelo, yellow-poplar, blackgum, and red maple. All other species were grouped according to growth dynamics into four species groups using cluster analysis. A ranking variable was incorporated into the individual tree growth models to account for competition.


2015 ◽  
Vol 45 (8) ◽  
pp. 1006-1018 ◽  
Author(s):  
Sonja Vospernik ◽  
Robert A. Monserud ◽  
Hubert Sterba

We examined the relationship between thinning intensity and volume increment predicted by four commonly used individual-tree growth models in Central Europe (i.e., BWIN, Moses, Prognaus, and Silva). We replicated conditions of older growth and yield experiments by selecting 34 young, dense plots of Norway spruce (Picea abies (L.) Karst.), Scots pine (Pinus sylvestris L.), and European beech (Fagus sylvatica L.). At these plots, we simulated growth, with mortality only, to obtain the maximum basal area. Maximum basal area was then decreased by 5% or 10% steps using thinning from below. Maximum density varied considerably between simulators; it was mostly in a reasonable range but partly exceeded the maximum basal area observed by the Austrian National Forest Inventory or the self-thinning line. In almost all cases, simulated volume increment was highest at maximum basal area and then decreased with decreasing basal area. Critical basal area, at which 95% of maximum volume increment can be achieved, ranged from 0.46 to 0.96. For all simulators, critical basal area was lower for the more shade-tolerant species. It increased with age, except for Norway spruce, when simulated with the BWIN model. Age, where mean annual increment culminated, compared well with yield tables.


2020 ◽  
Author(s):  
Seyedeh Kosar Hamidi ◽  
Aaron Weiskittel ◽  
Mahmoud Bayat ◽  
Asghar Fallah

Abstract BackgroundThe Hyrcanian forests of Iran contain many species-rich communities that can only be maintained through an understanding of the renewal and development of these forests. Located in the Jojadeh section of the Farim forest in northern Iran, individual tree growth of five distinct species [(Oriental beech (Fagus orientalis Lipsky), chestnut-leaved oak (Quercus castaneifolia Coss. ex J.Gay), Persian maple (Acer velutinum Boiss.), common hornbeam (Carpinus betulus L.) and Caucasian alder (Alnus subcordata C.A.Mey.)] were measured on 313 permanent sample plots (0.1 ha) over a 10-year period (2003-2013). MethodsIn this analysis, various tree-level predictions were investigated using the available data with application of parametric models and two artificial neural networks (i.e., the multilayer perceptron (MLP) and radial basis function (RBF) networks). ResultsIndividual tree diameter growth models showed a robust negative relationship with basal area in larger trees (BAL), which was relatively consistent across species. A total height model indicated that the examined species did not differ for a given set of covariates. In the survival model, the survival probability of Oriental beech was lower than the other species, while the ingrowth model revealed sapling density of all species increased with the greater basal area. The artificial neural network based on the MLP was superior for all models and predicted more accurately than the RBF. Furthermore, the models based on the MLP were also superior to the parametric individual tree models developed using mixed-effect regression. ConclusionThe use of these developed models in forest planning and management is imperative, but assessment of long-term projection behavior across the contrasting statistical approaches used is warranted despite the general superiority of the non-parametric models.


2020 ◽  
Vol 42 (1) ◽  
Author(s):  
Nguyen Thanh Tuan ◽  
Vu Dinh Duy ◽  
Shen H-L

The aim of this study was to explore the correlation of competition indices (CIs) on individual tree growth for Korean pine (Pinus koraiensis) plantation using partial correlation analysis and generalized linear models. The data were collected from 15 permanent plots in Mengjiagang forestry farm, Northeast China. The results showed that the distance dependent CIs have a higher predictive capacity for individual growth of pine trees. The control index of competitive trees number (CI1) combined with the selection fixed competitor trees (M2) was found to be the most well correlated competition measure with five - years diameter increment. Thus, the competition index (CI1- M2) was recommended for developing individual tree growth models. The subject tree diameter at breast height, crown width, height to crown base, tree volume and basal area all showed a significantly linear correlation with tree competition intensity (P < 0,05). Diameter at breast height, crown width, tree volume and basal area all decreased with increasing competition intensity, whereas the height to crown base increased. There was no significant relationship between competition intensity and tree height (P > 0,05). The optimal model of predicting individual growth with logarithm of diameter at breast height and CIs as the independent variables due to the best fitting performance. This results also showed considerable improvement in predicting individual tree periodic growth when including competition indices that the mean absolute error is reduced in the range of 22−25%. 


2015 ◽  
Vol 166 (6) ◽  
pp. 389-398 ◽  
Author(s):  
Brigitte Rohner ◽  
Esther Thürig

Development of climate-dependent growth functions for the scenario model “Massimo” Tree growth is substantially influenced by climatic factors. In the face of climate change, climate effects should therefore be included in estimations of Switzerland's future forest productivity. In order to include climate effects in the growth functions of the “Massimo” model, which is typically applied to project forest resources in Switzerland, we statistically modelled climate effects on tree growth representatively for Switzerland by simultaneously considering further growth-influencing factors. First, we used tree ring data to evaluate how climate variables should be defined. This analyses showed that for modelling multi-year tree growth we should use averages of whole-year variables. Second, we fitted nonlinear mixed-effects models separately for the main tree species to individual-tree growth data from the Swiss National Forest Inventory. In these models, we combined climate variables defined according to the results of the tree ring study with various further variables that characterize sites, stands and individual trees. The quantified effects were generally plausible and explained convincingly the physiological differences between the species. The statistical growth models for the main tree species will now be included in the forest scenario model “Massimo”. This will allow for founded analyses of scenarios which assume changing climatic conditions.


Sign in / Sign up

Export Citation Format

Share Document