Geometrodynamics of Lovelock black holes

2013 ◽  
Vol 91 (6) ◽  
pp. 461-462
Author(s):  
Gabor Kunstatter

Lovelock gravity is arguably the most natural higher curvature, higher dimensional generalization of Einstein's theory of gravity. As shown in a previous paper (Kunstatter et al. arXiv:1210.1566; Kunstatter et al. Classical Quantum Gravity, 29, 092001 (2012) (Fast Track); arXiv:1201.4904.), the Hamiltonian for spherically symmetric Lovelock gravity is as simple as that of general relativity when written in terms of geometrodynamical variables (i.e., the areal radius and mass function). This result paves the way to the study of critical phenomena in black hole formation and the quantum mechanics of Lovelock black holes.

2009 ◽  
Vol 18 (14) ◽  
pp. 2221-2229 ◽  
Author(s):  
R. MAIER ◽  
I. DAMIÃO SOARES

The dynamics of gravitational collapse is examined in the realm of string-based formalism of D-branes which encompasses general relativity as a low energy limit. A complete analytical solution is given to the spherically symmetric collapse of a pure dust star, including its matching with a corrected Schwarzschild exterior space–time. The collapse forms a black hole (an exterior event horizon) enclosing not a singularity but perpetually bouncing matter in the infinite chain of space–time maximal analytical extensions inside the outer event horizon. This chain of analytical extensions has a structure analogous to that of the Reissner–Nordstrom solution. The interior trapped bouncing matter has the possibility of being expelled by disruptive nonlinear resonance mechanisms.


Universe ◽  
2020 ◽  
Vol 6 (9) ◽  
pp. 148
Author(s):  
Jianhui Qiu ◽  
Changjun Gao

We construct higher-dimensional and exact black holes in Einstein-Maxwell-scalar theory. The strategy we adopted is to extend the known, static and spherically symmetric black holes in the Einstein-Maxwell dilaton gravity and Einstein-Maxwell-scalar theory. Then we investigate the black hole thermodynamics. Concretely, the generalized Smarr formula and the first law of thermodynamics are derived.


Author(s):  
Sayak Datta ◽  
Sukanta Bose

AbstractWe study the quasi-normal modes (QNMs) of static, spherically symmetric black holes in f(R) theories. We show how these modes in theories with non-trivial f(R) are fundamentally different from those in general relativity. In the special case of $$f(R) = \alpha R^2$$f(R)=αR2 theories, it has been recently argued that iso-spectrality between scalar and vector modes breaks down. Here, we show that such a break down is quite general across all f(R) theories, as long as they satisfy $$f''(0)/(1+f''(0)) \ne 0$$f′′(0)/(1+f′′(0))≠0, where a prime denotes derivative of the function with respect to its argument. We specifically discuss the origin of the breaking of isospectrality. We also show that along with this breaking the QNMs receive a correction that arises when $$f''(0)/(1+f'(0)) \ne 0$$f′′(0)/(1+f′(0))≠0 owing to the inhomogeneous term that it introduces in the mode equation. We discuss how these differences affect the “ringdown” phase of binary black hole mergers and the possibility of constraining f(R) models with gravitational-wave observations. We also find that even though the iso-spectrality is broken in f(R) theories, in general, nevertheless in the corresponding scalar-tensor theories in the Einstein frame it is unbroken.


2009 ◽  
Vol 18 (13) ◽  
pp. 2061-2082 ◽  
Author(s):  
S. HABIB MAZHARIMOUSAVI ◽  
O. GURTUG ◽  
M. HALILSOY

We present the generalization of a known theorem to generate static, spherically symmetric black hole solutions in higher-dimensional Lovelock gravity. Particular limits such as Gauss–Bonnet (GB) and Einstein–Hilbert (EH) in any dimension N yield all the solutions known to date with an energy–momentum. In our generalization, with special emphasis on third order Lovelock gravity, we have found two different class of solutions characterized by the matter field parameter. Several particular cases are studied and properties related to asymptotic behaviors are discussed. Our general solution, which covers topological black holes as well, splits naturally into distinct classes such as Chern–Simon (CS) and Born–Infeld (BI) in higher-dimensions. The occurence of naked singularities is studied and it is found that the space–time behaves nonsingularly in the quantum-mechanical sense when it is probed with quantum test particles. The theorem is extended to cover Bertotti–Robinson (BR) type solutions in the presence of the GB parameter alone. Finally, we prove also that extension of the theorem for a scalar–tensor source of higher dimensions (N > 4) fails to work.


2019 ◽  
Vol 17 (1, spec.issue) ◽  
pp. 69-78
Author(s):  
Dejan Simic

In this article, we review two black hole solutions to the five-dimensional Lovelock gravity. These solutions are characterized by the non-vanishing torsion and the peculiar property that all their conserved charges vanish. The first solution is a spherically symmetric black hole with torsion, which also has zero entropy in the semiclassical approximation. The second solution is a black ring, which is the five-dimensional uplift of the BTZ black hole with torsion in three dimensions.


2013 ◽  
Vol 28 (22n23) ◽  
pp. 1340017 ◽  
Author(s):  
HELVI WITEK

Black holes are among the most exciting phenomena predicted by General Relativity and play a key role in fundamental physics. Many interesting phenomena involve dynamical black hole configurations in the high curvature regime of gravity. In these lecture notes I will summarize the main numerical relativity techniques to explore highly dynamical phenomena, such as black hole collisions, in generic D-dimensional space–times. The present notes are based on my lectures given at the NR/HEP2 spring school at IST/Lisbon (Portugal) from March 11–14, 2013.


2012 ◽  
Vol 21 (12) ◽  
pp. 1230001 ◽  
Author(s):  
HARVEY S. REALL

This paper reviews black hole solutions of higher-dimensional General Relativity (GR). The focus is on stationary vacuum solutions and recent work on instabilities of such solutions.


1993 ◽  
Vol 02 (04) ◽  
pp. 451-462 ◽  
Author(s):  
M. CAMPANELLI ◽  
C.O. LOUSTO

We study a three-parameter family of solutions of the Brans-Dicke field equations. They are static and spherically symmetric. We find the range of parameters for which this solution represents a black hole different from the Schwarzschild one. We find a subfamily of solutions which agrees with experiments and observations in the solar system. We discuss some astrophysical applications and the consequences on the “no hair” theorems for black holes.


Author(s):  
Chun-Hung Chen ◽  
Hing Tong Cho ◽  
Anna Chrysostomou ◽  
Alan Cornell

Abstract While Hod's conjecture is demonstrably restrictive, the link he observed between black hole (BH) area quantisation and the large overtone ($n$) limit of quasinormal frequencies (QNFs) motivated intense scrutiny of the regime, from which an improved understanding of asymptotic quasinormal frequencies (aQNFs) emerged. A further outcome was the development of the ``monodromy technique", which exploits an anti-Stokes line analysis to extract physical solutions from the complex plane. Here, we use the monodromy technique to validate extant aQNF expressions for perturbations of integer spin, and provide new results for the aQNFs of half-integer spins within higher-dimensional Schwarzschild, Reissner-Nordstr{\"o}m, and Schwarzschild (anti-)de Sitter BH spacetimes. Bar the Schwarzschild anti-de Sitter case, the spin-1/2 aQNFs are purely imaginary; the spin-3/2 aQNFs resemble spin-1/2 aQNFs in Schwarzschild and Schwarzschild de Sitter BHs, but match the gravitational perturbations for most others. Particularly for Schwarzschild, extremal Reissner-Nordstr{\"o}m, and several Schwarzschild de Sitter cases, the application of $n \rightarrow \infty$ generally fixes $\mathbb{R}e \{ \omega \}$ and allows for the unbounded growth of $\mathbb{I}m \{ \omega \}$ in fixed quantities.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Tomas Andrade ◽  
Christiana Pantelidou ◽  
Julian Sonner ◽  
Benjamin Withers

Abstract General relativity governs the nonlinear dynamics of spacetime, including black holes and their event horizons. We demonstrate that forced black hole horizons exhibit statistically steady turbulent spacetime dynamics consistent with Kolmogorov’s theory of 1941. As a proof of principle we focus on black holes in asymptotically anti-de Sitter spacetimes in a large number of dimensions, where greater analytic control is gained. We focus on cases where the effective horizon dynamics is restricted to 2+1 dimensions. We also demonstrate that tidal deformations of the horizon induce turbulent dynamics. When set in motion relative to the horizon a deformation develops a turbulent spacetime wake, indicating that turbulent spacetime dynamics may play a role in binary mergers and other strong-field phenomena.


Sign in / Sign up

Export Citation Format

Share Document