Impact of bone-marrow-derived mesenchymal stem cells on adriamycin-induced chronic nephropathy

2014 ◽  
Vol 92 (9) ◽  
pp. 733-743 ◽  
Author(s):  
Mohamed Sarhan ◽  
Hanaa El Serougy ◽  
Abdelaziz M. Hussein ◽  
Mohamed El-dosoky ◽  
Mohamed A. Sobh ◽  
...  

Objectives: To study the effects of bone-marrow-derived mesenchymal stem cells (BM-MSCs) on adriamycin (ADR)-induced chronic nephropathy in rats. Methods: 60 male Sprague–Dawley rats were distributed among 3 groups (20 rats each): (i) the negative control group, which was normal rats that received saline (vehicle); (ii) the positive control (ADR) group, which was rats that received 2 intravenous injections of ADR into the penile vein at 14 day intervals without treatment, and (iii) the MSC group, which were rats treated as for the ADR group that were also given 2 intravenous injections of MSCs (5 days after each ADR injection). Results: ADR caused a significant reduction in animal body mass, survival rate, hemoglobin (Hb) content, serum albumin, and renal GSH, and significantly increased serum levels of triglycerides, cholesterol, urinary protein excretion and kidney injury molecule-1 (KIM-1), renal MDA, as well as caspase-3 expression and glomerular and tubulointerstitial damage compared with the negative control group. MSC treatment failed to improve animal survival rate, body mass, Hb level, proteinuria, or hypoalbuminemia; however, it mildly improved the serum BUN, hyperlipidemia, caspase-3 expression, urinary levels of KIM-1, renal oxidative stress markers, and glomerular and tubulointerstitial damage score. Conclusion: administration of BM-MSCs during induction of ADR nephropathy provides partial protection, which could be due to improvements in the levels of of endogenous antioxidants, reduction of apoptosis, and maintenance of the integrity of the glomerular membrane.

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Hang Zhao ◽  
Zhiying He ◽  
Dandan Huang ◽  
Jun Gao ◽  
Yanfang Gong ◽  
...  

Background & Aims. Severe acute pancreatitis (SAP) remains a high-mortality disease. Bone marrow (BM) mesenchymal stem cells (MSCs) have been demonstrated to have plasticity of transdifferentiation and to have immunomodulatory functions. In the present study, we assessed the roles of MSCs in SAP and the therapeutic effects of MSC on SAP after transplantation.Methods. A pancreatitis rat model was induced by the injection of taurocholic acid (TCA) into the pancreatic duct. After isolation and characterization of MSC from BM, MSC transplantation was conducted 24 hrs after SAP induction by tail vein injection. The survival rate was observed and MSCs were traced after transplantation. The expression of TNF-αand IL-1βmRNA in the transplantation group was also analyzed.Results. The survival rate of the transplantation group was significantly higher compared to the control group (p<0.05). Infused MSCs were detected in the pancreas and BM 3 days after transplantation. The expression of TNF-αand IL-1βmRNA in the transplantation group was significantly lower than in the control group in both the pancreas and the lungs (p<0.05).Conclusions. MSC transplantation could improve the prognosis of SAP rats. Engrafted MSCs have the capacity of homing, migration, and planting during the treatment of SAP.


2019 ◽  
Vol 9 (11) ◽  
pp. 1583-1588
Author(s):  
Shaoting Li ◽  
Jinhe Zhou ◽  
Zhiqing Ye ◽  
Shenglin Wu

Bone marrow mesenchymal stem cells (BMSCs) can be multi-directionally differentiated and are widely used in tissue engineering. 25-hydroxycholesterol (25-HC) can induce osteogenesis and is involved in osteogenic formation. However, the role of 25-hydroxycholesterol in BMSCs is unclear. Rat BMSCs were isolated and divided into control group and 25-HC treatment (2 and 4 μM) group. Cell proliferation was detected by MTT assay. Caspase-3 and ALP activity was analyzed. Real time PCR was done to analyze Runx2, OPN, FABP4 and PPARγ2 expression. Red staining detects the calcified nodule formation. Wnt5 level was detected by western blot and TGF-β secretion was analyzed by ELISA. 25-HC treatment significantly inhibited cell proliferation, increased Caspase 3 activity, decreased ALP activity and the expression of Runx2 and OPN, increased expression of FABP4 and PPARγ2, decreased formation of calcified nodules, secretion of TGF-β and reduced expression of Wnt5 compared to control group (P < 0.05), and the above changes were significant with the increase of the concentration of 25-HC (P < 0.05). 25-hydroxycholesterol regulates the proliferation and apoptosis of BMSCs by regulating Wnt5/TGF-β signaling pathway, inhibiting the differentiation of BMSCs into osteogenic direction and promoting its adipogenic differentiation.


2019 ◽  
Vol 9 (9) ◽  
pp. 1266-1272
Author(s):  
Yonggang Zhang ◽  
Junqi Wang ◽  
Junqi Yang ◽  
Peng Liu ◽  
Kunzheng Wang ◽  
...  

Bone marrow mesenchymal stem cells (BMSCs) can differentiate into osteogenesis. Integrin-linked kinase (ILK) regulates several biological processes. However, whether ILK affects metabolic syndrome (MS)-derived BMSCs differentiation remains unclear. SD rats were divided into control group and MS group. Diabetic rat model was prepared. BMSCs were divided into control group, MS group and ILK group, in which ILK plasmid was transfected into BMSCs from MS group followed by analysis of ILK, Bcl-2, Bax, RUNX2 and OPN expression by real time PCR, BMSCs proliferation by MTT assay, BMSCs apoptosis, expression of Beclin-3 and LC-3 by Western blot as well as secretion of IL-1β and IL-6 by ELISA. MS group showed significantly reduced BMSCs proliferation, elevated Caspase 3 activity, downregulated Bcl-2, RUNX2 and OPN expression, upregulated Bax level and increased IL-1β and IL-6 secretion as well as decreased Beclin-3 and LC-3 expression compared to control group (P < 0.05). BMSCs with ILK overexpression in high glucose presented significantly promoted BMSCs proliferation, decreased Caspase 3 activity, increased Bcl-2, RUNX2 and OPN expression, decreased Bax expression and IL-1β and IL-6 secretion as well as reduced Beclin-3 and LC-3 expression compared to MS group (P < 0.05). ILK expression in MS-derived BMSCs is decreased. ILK overexpression in BMSCs can promote autophagy, inhibit apoptosis and inflammation, and promote their differentiation into osteoblasts.


2019 ◽  
Vol 9 (11) ◽  
pp. 1589-1594
Author(s):  
Xu Tong ◽  
Renjian Zheng ◽  
Linjing Shu

Bone marrow mesenchymal stem cells (BMSCs) osteogenic differentiation plays an important role in Osteoporosis (OP). LncRNA DGCR5 participates in OP development. However, LncRNA DGCR5's effect on BMSCs in osteoporosis rats and related mechanisms have not been elucidated. SD rats were divided into control group and OP group. Rat BMSCs were cultured and transfected with LncRNA DGCR5 siRNA followed by analysis of LncRNA DGCR5 expression by Real time PCR, cell proliferation by MTT assay, Caspase 3 activity, of ERK/P38 signaling pathway protein expression by Western blot, ALP activity, and the osteogenic genes Runx2 and OC expression by Real time PCR. LncRNA DGCR51 expression was increased in BMSCs of OP rats. Compared with control group, cell proliferation was significantly inhibited, Caspase 3 activity was increased, p-ERK1/2 and p-P38 were downregulated, ALP activity, Runx2 and OC expression was decreased (P < 0.05). DGCR51 siRNA transfection into OP rat BMSCs significantly reduced DGCR51 expression, promoted cell proliferation, decreased Caspase 3 activity, increased p-ERK1/2 and p-P38 expression, increased ALP activity, Runx2 and OC expression compared to OP group (P < 0.05). LncRNA DGCR51 expression is increased in OP rat BMSCs. Down-regulation of LncRNA DGCR51 promoted the activation of ERK/P38 signaling pathway, thereby inhibiting the apoptosis of BMSCs and promoting proliferation and osteogenic differentiation of BMSC in OP rats.


2019 ◽  
Vol 9 (9) ◽  
pp. 1304-1310
Author(s):  
Qing Yang ◽  
Lei Wu ◽  
Yang Liu ◽  
Bing Yuan

Chordin-like 1 (CHRDL1) functions in multiple tissues and organs. However, whether CHRDL1 affects bone marrow mesenchymal stem cells (BMSCs) differentiation remain unclear. Rat BMSCs were isolated and divided into control group, CHRDL1 group and CHRDL1 siRNA group followed by analysis of CHRDL1 level by real time PCR and ELISA, cell proliferation by MTT assay, Caspase 3 activity, ALP activity, expression of o Runx2, OC and PPARγ2 by Real time PCR, TGF-β secretion by ELIS, and Wnt5 protein expression by Western blot. CHRDL1 expression was significantly increased in CHRDL1 group, along with significantly promoted cell proliferation, decreased Caspase 3 activity, increased ALP activity and expression of Runx2 and OC, decreased PPARγ2 expression, increased TGF-β secretion and Wnt5 expression compared to control group (P < 0.05). However, CHRDL1 siRNA transfection significantly decreased CHRDL1 expression, inhibited cell proliferation, increased Caspase 3 activity, decreased ALP activity and Runx2 and OC expression, increased PPARγ2 expression, decreased TGF-β secretion and Wnt5 expression. (P < 0.05). Down-regulation of CHRDL1 expression in BMSCs promotes Wnt5/TGF-β signaling transduction, which in turn increases BMSCs proliferation and osteogenic differentiation. Up-regulation of CHRDL1 expression in BMSCs inhibited the activation of Wnt5/TGF-β signaling pathway, promoted BMSCs apoptosis, and inhibited BMSCs proliferation and osteogenic differentiation.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Takenori Suga ◽  
Michihiko Usui ◽  
Satoru Onizuka ◽  
Kotaro Sano ◽  
Tsuyoshi Sato ◽  
...  

A spheroid is known as a three-dimensional culture model, which better simulates the physiological conditions of stem cells. This study is aimed at identifying genes specifically expressed in spheroid-cultured human periodontal ligament mesenchymal stem cells (hPDLMSCs) using RNA-seq analysis to evaluate their functions. Transcriptome analysis was performed using spheroid and monolayer cultures of hPDLMSCs from four patients. Cluster and Gene Ontology analyses revealed that genes involved in cell-cell adhesion as well as the G2/M and G1/S transitions of mitotic cell cycles were strongly expressed in the monolayer culture group. However, genes involved in the negative regulation of cell proliferation, histone deacetylation, and bone morphogenetic protein signaling were strongly expressed in the spheroid culture group. We focused on the transcription factor nuclear receptor subfamily 4 group A member 2 (NR4A2) among the genes that were strongly expressed in the spheroid culture group and analyzed its function. To confirm the results of the transcriptome analysis, we performed real-time polymerase chain reaction and western blotting analyses. Interestingly, we found that the mRNA and protein expressions of NR4A2 were strongly expressed in the spheroid-cultured hPDLMSCs. Under osteogenic differentiation conditions, we used siRNA to knock down NR4A2 in spheroid-cultured hPDLMSCs to verify its role in osteogenesis. We found that NR4A2 knockdown significantly increased the levels of mRNA expression for osteogenesis-related genes alkaline phosphatase (ALP), Osteopontin (OPN), and type 1 collagen (COL1) (Student’s paired t -test, p < 0.05 ). ALP activity was also significantly increased when compared to the negative control group (Student’s paired t -test, p < 0.05 ). Additionally, spheroid-cultured hPDLMSCs transfected with siNR4A2 were cultured for 12 days, resulting in the formation of significantly larger calcified nodules compared to the negative control group (Student’s paired t -test, p < 0.05 ). On the other hand, NR4A2 knockdown in hPDLMSC spheroid did not affect the levels of chondrogenesis and adipogenesis-related genes under chondrogenic and adipogenic conditions. These results suggest that NR4A2 negatively regulates osteogenesis in the spheroid culture of hPDLMSCs.


2021 ◽  
Vol 11 (8) ◽  
pp. 1618-1623
Author(s):  
Lian Chen ◽  
Zhengwen Ruan

Ischemia/reperfusion injury (IRI) causes myocardial damage. Bone marrow mesenchymal stem cells (BMSCs) exert protection on damaged hearts. We studied the effect of BMSCs with highly expressed miR-145 on repairing damaged heart caused by IRI in rats. SD rats were selected to isolate BMSCs which were assigned into negative control group, BMSCs group or miR-145-BMSCs (transfected with a lentivirus carrying pLVX-miR-145) followed by analysis of cell proliferation and apoptosis, and level of miR-145, Bcl2, Bax and VEGF by qRT-PCR. BMSCs overexpressing miR-145 showed elevated proliferation and decreased apoptotic activity. The cardiac function of miR-145-BMSCs and BMSCs rats was improved significantly, Bcl-2 and VEGF expression was enhanced, and Bax was decreased with more significant improvement in miR-145-BMSCs group. miR-145 overexpression has a regulatory effect on the biological behavior of BMSCs, and upregulates Bcl-2, VEGF and other key factors to repair the heart damage caused by IRI and restore heart function.


2019 ◽  
Vol 9 (8) ◽  
pp. 1154-1159
Author(s):  
Leitao Qi ◽  
Hongqing An

Oxidative stress causes damage and apoptosis of bone marrow mesenchymal stem cells (BMSCs). Osteoprotegerin (OPG) regulates bone differentiation. However, whether OPG plays a role in osteogenic/adipogenic differentiation under oxidative stress remains poorly understood. Rat BMSCs were randomly divided into control group; H2O2 group, in which H2O2 was used to prepare oxidative stress model; OPG group, in which 5 μM OPG was added to BMSCs based on oxidative stress model followed by analysis of BMSCs proliferation by MTT assay, BMSCs apoptosis, expression of RUNX2, OPN, FABP4 and PPARγ2 by real time PCR, OPG and RANKL protein expression by Western blot as well as SOD activity and ROS content by spectrophotometry. Compared with control group, H2O2 significantly decreased BMSCs proliferation, increased Caspase 3 activity, downregulated RUNX2 and OPN, upregulated FABP4 and PPARγ2, decreased SOD activity and increased ROS content (P < 0.05). Under H2O2 treatment, OPG addition significantly promoted BMSCs proliferation, decreased Caspase 3 activity, increased RUNX2 and OPN expression, decreased FABP4 and PPARγ2 expression, increased SOD activity, and decreased ROS content and RANKL expression (P < 0.05). OPG can promote osteogenic differentiation of BMSCs under oxidative stress, inhibit adipogenic differentiation, and protect BMSCs from damage and promote BMSCs proliferation by regulating OPG/RANKL signaling pathway.


2022 ◽  
Vol 12 (5) ◽  
pp. 1034-1039
Author(s):  
Xiaoxiang Wang ◽  
Lan Yu ◽  
Xing Xiong ◽  
Yao Chen ◽  
Bo Men

Bone marrow mesenchymal stem cells (BMSCs) are capable of multipolar differentiation and repairing injured tissues. Herein, we aimed to investigate the mechanism by how BMSCs modulate the apoptotic pathway in the acute pancreatitis (AP). In this study, primary BMSCs were cultured and administrated into 10 AP mice while 10 healthy mice were taken as a blank group and 10 AP mice as a control group. The mouse pancreatic tissues were assessed by HE staining and evaluated by pancreatitis score and serum amylase detection. Level of inflammatory factors CRP and TNF-α was measured by ELISA and PIPK1, PIPK3, MLKL and Caspase-8 expression was detected by RT-qPCR and Western blot. The pancreatitis score (7.29±1.36) and the serum amylase score of (453.66±103.67) mu/ml of BMSCs group was significantly higher than that of control group, indicating increased tissue repair after BMSCs treatment. BMSCs group exhibited a higher level of CRP (711.01±115.31) and TNF-α (132.81±22.13) in serum compared to control group (p < 0.05). PIPK1, PIPK3, and MLKL expression in BMSCs group decreased (p < 0.05) whereas Caspase-8 was increased (p < 0.05). On the other hand, BMSCs group presented upregulated PIPK1, PIPK3, and MLKL (p < 0.05) and downregulated Caspase-8 (p < 0.05). In conclusion, BMSCs regulate cell apoptosis by upregulating Caspase-8 expression, and downregulating PIPK1, PIPK3 and MLKL level, thereby alleviating the inflammation in AP.


Sign in / Sign up

Export Citation Format

Share Document