New insights into the non-hemostatic role of von Willebrand factor in endothelial protection

2017 ◽  
Vol 95 (10) ◽  
pp. 1183-1189 ◽  
Author(s):  
Silvia Agostini ◽  
Vincenzo Lionetti

During exposure to ischemia–reperfusion (I/R) insult, angiotensin II (AngII)-induced endothelin-1 (ET-1) upregulation in endothelial cells progressively impairs nitric oxide (NO) bioavailability while increasing levels of superoxide anion (O2−) and leading to the onset of endothelial dysfunction. Moreover, the overexpression of ET-1 increases the endothelial and circulating levels of von Willebrand factor (vWF), a glycoprotein with a crucial role in arterial thrombus formation. Nowadays, the non-hemostatic role of endothelial vWF is emerging, although we do not yet know whether its increased expression is cause or consequence of endothelial dysfunction. Notably, the vWF blockade or depletion leads to endothelial protection in cultured cells, animal models of vascular injury, and patients as well. Despite the recent efforts to develop an effective pharmacological strategy, the onset of endothelial dysfunction is still difficult to prevent and remains closely related to adverse clinical outcome. Unraveling the non-hemostatic role of endothelial vWF in the onset of endothelial dysfunction could provide new avenues for protection against vascular injury mediated by AngII.

1994 ◽  
Vol 86 (2) ◽  
pp. 327-332 ◽  
Author(s):  
Edith Fressinaud ◽  
Augusto B. Federici ◽  
Giancarlo Castaman ◽  
Chantal Rothschild ◽  
Francesco Rodeghiero ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Luca Esposito ◽  
Francesco Paolo Cancro ◽  
Angelo Silverio ◽  
Marco Di Maio ◽  
Patrizia Iannece ◽  
...  

Acute coronary syndromes (ACS) are frequently reported in patients with coronavirus disease 2019 (COVID-19) and may impact patient clinical course and mortality. Although the underlying pathogenesis remains unclear, several potential mechanisms have been hypothesized, including oxygen supply/demand imbalance, direct viral cellular damage, systemic inflammatory response with cytokine-mediated injury, microvascular thrombosis, and endothelial dysfunction. The severe hypoxic state, combined with other conditions frequently reported in COVID-19, namely sepsis, tachyarrhythmias, anemia, hypotension, and shock, can induce a myocardial damage due to the mismatch between oxygen supply and demand and results in type 2 myocardial infarction (MI). In addition, COVID-19 promotes atherosclerotic plaque instability and thrombus formation and may precipitate type 1 MI. Patients with severe disease often show decrease in platelets count, higher levels of d-dimer, ultralarge von Willebrand factor multimers, tissue factor, and prolongation of prothrombin time, which reflects a prothrombotic state. An endothelial dysfunction has been described as a consequence of the direct viral effects and of the hyperinflammatory environment. The expression of tissue factor, von Willebrand factor, thromboxane, and plasminogen activator inhibitor-1 promotes the prothrombotic status. In addition, endothelial cells generate superoxide anions, with enhanced local oxidative stress, and endothelin-1, which affects the vasodilator/vasoconstrictor balance and platelet aggregation. The optimal management of COVID-19 patients is a challenge both for logistic and clinical reasons. A deeper understanding of ACS pathophysiology may yield novel research insights and therapeutic perspectives in higher cardiovascular risk subjects with COVID-19.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1797-1797 ◽  
Author(s):  
Wolfgang Bergmeier ◽  
Crystal L. Piffath ◽  
Tobias Goerge ◽  
Stephen M. Cifuni ◽  
Zaverio M. Ruggeri ◽  
...  

Abstract GPIbα binding to von Willebrand factor (VWF) exposed at a site of vascular injury is thought to be the first step in the formation of a hemostatic plug. However, our previous studies in VWF-deficient mice demonstrated delayed but not absent arterial thrombus formation suggesting that, under these conditions, GPIbα may bind other ligands or that a receptor other than GPIbα can mediate platelet adhesion. Here we studied thrombus formation in transgenic mice expressing GPIbα in which the extracellular domain was replaced by that of the human interleukin-4 receptor (IL4Rα/GPIbα-tg mice). Platelet adhesion to ferric chloride-treated mesenteric arterioles in IL4Rα/GPIbα-tg mice was virtually absent in contrast to avid adhesion in wild-type (WT) mice. As a consequence, arterial thrombus formation was completely inhibited in the mutant mice. Our studies further show that, when infused into WT recipient mice, IL4Rα/GPIbα-tg platelets or WT platelets lacking the 45 kD N-terminal domain of GPIbα failed to incorporate into growing arterial thrombi, even if the platelets were activated prior to infusion. Surprisingly, platelets lacking β3 integrins, which are unable to form thrombi on their own, incorporated efficiently into WT thrombi. Our studies provide in vivo evidence that GPIbα is absolutely required for recruitment of platelets to both exposed subendothelium and thrombi under arterial flow conditions. Thus, GPIbα contributes to arterial thrombosis by important adhesion mechanisms independent of the binding to VWF.


Blood ◽  
2008 ◽  
Vol 112 (3) ◽  
pp. 603-609 ◽  
Author(s):  
Isabelle Marx ◽  
Olivier D. Christophe ◽  
Peter J. Lenting ◽  
Alain Rupin ◽  
Marie-Odile Vallez ◽  
...  

Abstract The role of von Willebrand factor (VWF) in thrombosis involves its binding to a number of ligands. To investigate the relative importance of these particular interactions in the thrombosis process, we have introduced mutations into murine VWF (mVWF) cDNA inhibiting VWF binding to glycoprotein (Gp) Ib, GPIIbIIIa, or to fibrillar collagen. These VWF mutants were expressed in VWF-deficient mice (VWF−/−) by using an hydrodynamic injection approach, and the mice were studied in the ferric chloride–induced injury model. Expression of the collagen and the GPIIbIIIa VWF-binding mutants in VWF−/− mice resulted in delayed thrombus growth and significantly increased vessel occlusion times compared with mice expressing wild-type (WT) mVWF (30 ± 3 minutes and 38 ± 4 minutes for the collagen and GPIIbIIIa mutants, respectively, vs 19 ± 3 minutes for WT mVWF). Interestingly, these mutants were able to correct bleeding time as efficiently as WT mVWF. In contrast, VWF−/− mice expressing the GPIb binding mutant failed to restore thrombus formation and were bleeding for as long as they were observed, confirming the critical importance of the VWF-GPIb interaction. Our observations suggest that targeting the VWF-collagen or VWF-GPIIbIIIa interactions could be an interesting alternative for new antithrombotic strategies.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Felice Gragnano ◽  
Simona Sperlongano ◽  
Enrica Golia ◽  
Francesco Natale ◽  
Renatomaria Bianchi ◽  
...  

Beyond its role in hemostasis, von Willebrand factor (VWF) is an emerging mediator of vascular inflammation. Recent studies highlight the involvement of VWF and its regulator, ADAMTS13, in mechanisms that underlie vascular inflammation and immunothrombosis, like leukocyte rolling, adhesion, and extravasation; vascular permeability; ischemia/reperfusion injury; complements activation; and NETosis. The VWF/ADAMTS13 axis is implicated in the pathogenesis of atherosclerosis, promoting plaque formation and inflammation through macrophage and neutrophil recruitment in inflamed lesions. Moreover, VWF and ADAMTS13 have been recently proposed as prognostic biomarkers in cardiovascular, metabolic, and inflammatory diseases, such as diabetes, stroke, myocardial infarction, and sepsis. All these features make VWF an attractive therapeutic target in thromboinflammation. Several lines of research have recently investigated “tailor-made” inhibitors of VWF. Results from animal models and clinical studies support the potent anti-inflammatory and antithrombotic effect of VWF antagonism, providing reassuring data on its safety profile. This review describes the role of VWF in vascular inflammation “from bench to bedside” and provides an updated overview of the drugs that can directly interfere with the VWF/ADAMTS13 axis.


2013 ◽  
Vol 39 (03) ◽  
pp. 306-314 ◽  
Author(s):  
Birte Fuchs ◽  
Susanne de Witt ◽  
Barbara Solecka ◽  
Mario Kröning ◽  
Tobias Obser ◽  
...  

1992 ◽  
Vol 67 (04) ◽  
pp. 453-457 ◽  
Author(s):  
Raelene L Kinlough-Rathbone ◽  
Marian A Packham ◽  
Dennis W Perry ◽  
J Fraser Mustard ◽  
Marco Cattaneo

SummaryThe stability of platelet aggregates is influenced by the extent of the release of granule contents; if release is extensive and aggregation is prolonged, deaggregation is difficult to achieve. The relative importance of the contributions of released substances to aggregate stability are not known, although stable thrombin-induced aggregates form in platelet-rich plasma from patients with barely detectable plasma or platelet fibrinogen, and ADP stabilizes thrombin-induced aggregates of platelets from patients with delta storage pool deficiency which otherwise deaggregate more readily than normal platelets. We degranulated platelets with thrombin (0.9 U/ml caused greater than 90% loss of delta and alpha granule contents) and recovered them as individual platelets in fresh medium. The degranulated platelets were reaggregated by thrombin (2 U/ml). To prevent continuing effects of thrombin, FPRCH2C1 was added when thrombin-induced aggregation of thrombin-degranulated platelets reached its maximum. EDTA (5 mM) or EGTA (5 mM) added at maximum aggregation did not deaggregate these platelets, indicating that the stability of these aggregates does not depend on Ca2+ in the medium. Whereas with control platelets a combination of PGE1 (10 μM) and chymotrypsin(10 U/ml) was required for deaggregation, with thrombin-degranulated platelets either PGE1 or chymo-trypsin alone caused extensive deaggregation. The rate and extent of deaggregation of thrombin-degranulated platelets by a combination of PGE1 and chymotrypsin was greater than with control platelets.Electron microscope gold immunocytochemistry using antihuman fibrinogen IgG, anti-von Willebrand factor and anti-fibronectin showed a) that fibrinogen in the vacuoles of degranulated platelets was visible at focal points of platelet contact in the aggregates, but that large areas of platelet contact had no fibrinogen detectable between them; and b) in comparison to fibrinogen, little fibronectin or von Willebrand factor (vWf) was detectable in the platelets.Since the linkages between thrombin-degranulated platelets reaggregated by thrombin can be disrupted either by raising cAMP (thus making glycoprotein IIb/IIIa unavailable) or by proteolysis, these linkages are less stable than those formed between normal platelets. It might therefore be expected that platelets that take part in thrombus formation and then recirculate are likely to form less stable thrombi than platelets that have not released their granule contents.


Sign in / Sign up

Export Citation Format

Share Document