Biased signalling in platelet G-protein‐coupled receptors.

Author(s):  
Pierre E. Thibeault ◽  
Rithwik Ramachrandran

Platelets are small megakaryocyte-derived, anucleate, disk-like structures that play an outsized role in human health and disease. Both a decrease in the number of platelets, as well as a variety of platelet function disorders, result in petechiae or bleeding which can be life threatening. Conversely, the inappropriate activation of platelets, within diseased blood vessels, remains the leading cause of death and morbidity through affecting heart attacks and stroke. The fine balance of the platelet state in healthy individuals is controlled by a number of receptor-mediated signalling pathways that allow the platelet to rapidly respond and maintain haemostasis. G-protein-coupled receptors (GPCRs) are particularly important regulators of platelet function. Here we focus on the major platelet-expressed GPCRs and discuss the roles of downstream signalling pathways (e.g. different G-protein subtypes or β-arrestin) in regulating the different phases of the platelet activation. Further, we consider the potential for selectively targeting signalling pathways that may contribute to platelet responses in disease through development of biased agonists. Such selective targeting of GPCR-mediated signalling pathways by drugs, often referred to as biased signalling, holds promise in delivering therapeutic interventions that do not present significant side-effects, especially in finely balanced physiological systems, such as platelet activation in haemostasis.

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3511-3511
Author(s):  
Jane E Norman ◽  
Matthew L Jones ◽  
Neil V Morgan ◽  
Jacqui Stockley ◽  
Martina E Daly ◽  
...  

Abstract Introduction G-protein coupled receptors (GPCRs) are critical mediators of platelet responses to stimulatory and inhibitory agonists. In rare families with mild bleeding, it is recognised that heterozygous loss of function variations in platelet GPCR genes may diminish platelet agonist responses. However, the population prevalence of loss of function variations in these genes is unknown. We have utilised population databases and next generation sequencing from patients with inherited platelet function disorders (IPFD) to describe the extent of genetic variation in the major platelet GPCRs. We have also used predictive computation and a new consensus structure of GPCRs (Venkatakrishnan AJ et al.Nature 2013; 494) to estimate which variations confer loss of function. Methods We interrogated the ESP and 1000 genomes population datasets for single nucleotide (SNV) and insertion-deletion (indel) variations in the genes encoding 6 stimulatory (ADRA2A, F2R, F2RL3, P2RY1, P2RY12, TBXA2R) and 2 inhibitory (PTGER4, PTGIR) platelet GPCRs. Coding and splice region variations within the relevant Refseq transcripts were functionally annotated using the Polyphen-2, SIFT and FATHMM algorithms. Missense variations within GPCR transmembrane (TM) domains, were annotated manually by expressing the substitutions in Ballesteros-Weinstein nomenclature before comparison with the consensus GPCR structure. Missense variations in the N- and C-terminal regions (NR and CR) and the intra- and extra- cellular loops (ICL and ECL) were annotated by identifying the position of the substituted residue relative to experimentally confirmed or putative functional motifs. An identical analysis was performed using exome data from 31 unrelated patients with IPFD recruited through the UK GAPP study with clinical bleeding and abnormal platelet function by light transmission aggregation. Results In 7745 individuals from the ESP and 1000 genomes cohorts, we identified 332 SNV in the target regions of the 8 GPCR genes (40.5 variations/kb) comprising 183 non-synonymous and 148 synonymous coding variants and 4 variations within intronic splice regions. There were no indel variations. Functional annotation of the non-synonymous SNVs identified 41 that potentially conferred loss of function, distributed in all the target GPCRs but with low population frequency (minor allele frequency range 1-0.008%). Five SNVs affected the NT, including Gly48Asp and Arg47His substitutions at the PAR4 receptor thrombin/trypsin cleavage site. There were 12 SNVs affecting the TM domains, of which 4 were predicted to disrupt GPCR folding, including a TPα receptor Pro305Leu substitution within the structural N/DPXXY motif and the P2Y12 receptor Met108Leu and Thr283Ile substitutions predicted to disrupt non-covalent TM network contacts. There were 14 SNVs affecting the ICL including the P2Y12 receptor Asp121Asn substitution in the E/DRY motif and prostacyclin (IP1) receptor Arg212Cys and Arg215Cys substitutions predicted to disrupt Gs coupling. Ten functional SNVs affected the CT. In 31 IPFD patients with complex laboratory phenotypes that could not be explained by loss of a single GPCR, there were 8 non-synonymous SNVs, of which 5 were predicted to confer loss of function (table). Discussion In unselected populations, heterozygous loss of function GPCR gene variations which potentially affect platelet agonist responses are individually rare, but collectively numerous. Loss of function GPCR variations were also present in patients with underlying IPFD. These data illustrate that variations in platelet regulatory genes may act as modifiers of laboratory phenotype in patients with underlying IPFD and that the net phenotype may be the product of multiple gene defects. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 22 (22) ◽  
pp. 12329
Author(s):  
Alfredo Ulloa-Aguirre ◽  
Teresa Zariñán ◽  
Eduardo Jardón-Valadez

Misfolding of G protein-coupled receptors (GPCRs) caused by mutations frequently leads to disease due to intracellular trapping of the conformationally abnormal receptor. Several endocrine diseases due to inactivating mutations in GPCRs have been described, including X-linked nephrogenic diabetes insipidus, thyroid disorders, familial hypocalciuric hypercalcemia, obesity, familial glucocorticoid deficiency [melanocortin-2 receptor, MC2R (also known as adrenocorticotropin receptor, ACTHR), and reproductive disorders. In these mutant receptors, misfolding leads to endoplasmic reticulum retention, increased intracellular degradation, and deficient trafficking of the abnormal receptor to the cell surface plasma membrane, causing inability of the receptor to interact with agonists and trigger intracellular signaling. In this review, we discuss the mechanisms whereby mutations in GPCRs involved in endocrine function in humans lead to misfolding, decreased plasma membrane expression of the receptor protein, and loss-of-function diseases, and also describe several experimental approaches employed to rescue trafficking and function of the misfolded receptors. Special attention is given to misfolded GPCRs that regulate reproductive function, given the key role played by these particular membrane receptors in sexual development and fertility, and recent reports on promising therapeutic interventions targeting trafficking of these defective proteins to rescue completely or partially their normal function.


2019 ◽  
Vol 119 (04) ◽  
pp. 534-541 ◽  
Author(s):  
Selin Gencer ◽  
Emiel van der Vorst ◽  
Maria Aslani ◽  
Christian Weber ◽  
Yvonne Döring ◽  
...  

AbstractInflammation has been well recognized as one of the main drivers of atherosclerosis development and therefore cardiovascular diseases (CVDs). It has been shown that several chemokines, small 8 to 12 kDa cytokines with chemotactic properties, play a crucial role in the pathophysiology of atherosclerosis. Chemokines classically mediate their effects by binding to G-protein-coupled receptors called chemokine receptors. In addition, chemokines can also bind to atypical chemokine receptors (ACKRs). ACKRs fail to induce G-protein-dependent signalling pathways and thus subsequent cellular response, but instead are able to internalize, scavenge or transport chemokines. In this review, we will give an overview of the current knowledge about the involvement of ACKR1–4 in CVDs and especially in atherosclerosis development. In the recent years, several studies have highlighted the importance of ACKRs in CVDs, although there are still several controversies and unexplored aspects that have to be further elucidated. A better understanding of the precise role of these atypical receptors may pave the way towards novel and improved therapeutic strategies.


Blood ◽  
2009 ◽  
Vol 113 (20) ◽  
pp. 4942-4954 ◽  
Author(s):  
Yotis A. Senis ◽  
Michael G. Tomlinson ◽  
Stuart Ellison ◽  
Alexandra Mazharian ◽  
Jenson Lim ◽  
...  

Abstract Platelets play a fundamental role in hemostasis and thrombosis. They are also involved in pathologic conditions resulting from blocked blood vessels, including myocardial infarction and ischemic stroke. Platelet adhesion, activation, and aggregation at sites of vascular injury are regulated by a diverse repertoire of tyrosine kinase–linked and G protein–coupled receptors. Src family kinases (SFKs) play a central role in initiating and propagating signaling from several platelet surface receptors; however, the underlying mechanism of how SFK activity is regulated in platelets remains unclear. CD148 is the only receptor-like protein tyrosine phosphatase identified in platelets to date. In the present study, we show that mutant mice lacking CD148 exhibited a bleeding tendency and defective arterial thrombosis. Basal SFK activity was found to be markedly reduced in CD148-deficient platelets, resulting in a global hyporesponsiveness to agonists that signal through SFKs, including collagen and fibrinogen. G protein–coupled receptor responses to thrombin and other agonists were also marginally reduced. These results highlight CD148 as a global regulator of platelet activation and a novel antithrombotic drug target.


2013 ◽  
Vol 41 (1) ◽  
pp. 144-147 ◽  
Author(s):  
Sophie Mary ◽  
Jean-Alain Fehrentz ◽  
Marjorie Damian ◽  
Pascal Verdié ◽  
Jean Martinez ◽  
...  

The dynamic character of GPCRs (G-protein-coupled receptors) is essential to their function. However, the details of how ligands and signalling proteins stabilize a receptor conformation to trigger the activation of a given signalling pathway remain largely unexplored. Multiple data, including recent results obtained with the purified ghrelin receptor, suggest a model where ligand efficacy and functional selectivity are directly related to different receptor conformations. Importantly, distinct effector proteins (G-proteins and arrestins) as well as ligands are likely to affect the conformational landscape of GPCRs in different manners, as we show with the isolated ghrelin receptor. Such modulation of the GPCR conformational landscape by pharmacologically distinct ligands and effector proteins has major implications for the design of new drugs that activate specific signalling pathways.


2015 ◽  
Vol 113 (04) ◽  
pp. 826-837 ◽  
Author(s):  
Matthew L. Jones ◽  
Jane E. Norman ◽  
Neil V. Morgan ◽  
Stuart J. Mundell ◽  
Marie Lordkipanidzé ◽  
...  

SummaryPlatelet responses to activating agonists are influenced by common population variants within or near G protein-coupled receptor (GPCR) genes that affect receptor activity. However, the impact of rare GPCR gene variants is unknown. We describe the rare single nucleotide variants (SNVs) in the coding and splice regions of 18 GPCR genes in 7,595 exomes from the 1,000-genomes and Exome Sequencing Project databases and in 31 cases with inherited platelet function disorders (IPFDs). In the population databases, the GPCR gene target regions contained 740 SNVs (318 synonymous, 410 missense, 7 stop gain and 6 splice region) of which 70 % had global minor allele frequency (MAF) < 0.05 %. Functional annotation using six computational algorithms, experimental evidence and structural data identified 156/740 (21 %) SNVs as potentially damaging to GPCR function, most commonly in regions encoding the transmembrane and C-terminal intracellular receptor domains. In 31 index cases with IPFDs (Gi-pathway defect n=15; secretion defect n=11; thromboxane pathway defect n=3 and complex defect n=2) there were 256 SNVs in the target regions of 15 stimulatory platelet GPCRs (34 unique; 12 with MAF< 1 % and 22 with MAF≥ 1 %). These included rare variants predicting R122H, P258T and V207A substitutions in the P2Y12 receptor that were annotated as potentially damaging, but only partially explained the platelet function defects in each case. Our data highlight that potentially damaging variants in platelet GPCR genes have low individual frequencies, but are collectively abundant in the population. Potentially damaging variants are also present in pedigrees with IPFDs and may contribute to complex laboratory phenotypes.


1995 ◽  
Vol 309 (2) ◽  
pp. 361-375 ◽  
Author(s):  
K Malarkey ◽  
C M Belham ◽  
A Paul ◽  
A Graham ◽  
A McLees ◽  
...  

Blood ◽  
2010 ◽  
Vol 115 (10) ◽  
pp. 2008-2013 ◽  
Author(s):  
Valérie Martin ◽  
Julie Guillermet-Guibert ◽  
Gaétan Chicanne ◽  
Cendrine Cabou ◽  
Martine Jandrot-Perrus ◽  
...  

Abstract During platelet activation, phosphoinositide 3-kinases (PI3Ks) produce lipid second messengers participating in the regulation of functional responses. Here, we generated a megakaryocyte-restricted p110β null mouse model and demonstrated a critical role of PI3Kβ in platelet activation via an immunoreceptor tyrosine-based activation motif, the glyco-protein VI-Fc receptor γ-chain complex, and its contribution in response to G-protein–coupled receptors. Interestingly, the production of phosphatidylinositol 3,4,5-trisphosphate and the activation of protein kinase B/Akt were strongly inhibited in p110β null platelets stimulated either via immunoreceptor tyrosine-based activation motif or G-protein–coupled receptors. Functional studies showed an important delay in fibrin clot retraction and an almost complete inability of these platelets to adhere onto fibrinogen under flow condition, suggesting that PI3Kβ is also acting downstream of αIIbβ3. In vivo studies showed that these mice have a normal bleeding time and are not protected from acute pulmonary thromboembolism but are resistant to thrombosis after FeCl3 injury of the carotid, suggesting that PI3Kβ is a potential target for antithrombotic drugs.


Sign in / Sign up

Export Citation Format

Share Document