Variation in cougar (Puma concolor) predation habits during wolf (Canis lupus) recovery in the southern Greater Yellowstone Ecosystem

2013 ◽  
Vol 91 (2) ◽  
pp. 82-93 ◽  
Author(s):  
T.D. Bartnick ◽  
T.R. Van Deelen ◽  
H.B. Quigley ◽  
D. Craighead

We examined predation habits of cougars (Puma concolor (L., 1771)) following the recent recovery of gray wolves (Canis lupus L., 1758) in the southern Greater Yellowstone Ecosystem. With the extirpation of wolves in the early 20th century, cougars likely expanded their niche space to include space vacated by wolves, and increased use of habitat better suited to the foraging of a coursing predator, like wolves. We predicted that as wolves recolonized their former range, competitive exclusion would compel cougars to cede portions of niche space occupied in the absence of wolves. To examine this hypothesis, we radio-tracked cougars and examined their predation sites from winter 2000–2001 through summer 2009. Variation in foraging by cougars was associated with increasing wolf presence. As wolf numbers increased and the mean distance between wolf pack activity centers and cougar predation sites decreased, cougars made kills at higher elevations on more north-facing slopes during summer and in more rugged areas during winter. In addition, cougars preyed on a higher proportion of mule deer (Odocoileus hemionus (Rafinesque, 1817)), consistent with predictions of exploitative competition with wolves. Observed changes in predation characteristics reflect differences in predation strategy between cougars and wolves, given that wolves are coursing predators and cougars are ambush predators. These possible predation effects should be considered when developing management strategies in systems where the recolonization of wolves may occur.

2020 ◽  
Author(s):  
LM Elbroch ◽  
L Marescot ◽  
H Quigley ◽  
D Craighead ◽  
Heiko Wittmer

© 2018 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. Humans are primary drivers of declining abundances and extirpation of large carnivores worldwide. Management interventions to restore biodiversity patterns, however, include carnivore reintroductions, despite the many unresolved ecological consequences associated with such efforts. Using multistate capture–mark–recapture models, we explored age-specific survival and cause-specific mortality rates for 134 pumas (Puma concolor) monitored in the Greater Yellowstone Ecosystem during gray wolf (Canis lupus) recovery. We identified two top models explaining differences in puma survivorship, and our results suggested three management interventions (unsustainable puma hunting, reduction in a primary prey, and reintroduction of a dominant competitor) have unintentionally impacted puma survival. Specifically, puma survival across age classes was lower in the 6-month hunting season than the 6-month nonhunting season; human-caused mortality rates for juveniles and adults, and predation rates on puma kittens, were higher in the hunting season. Predation on puma kittens, and starvation rates for all pumas, also increased as managers reduced elk (Cervus elaphus) abundance in the system, highlighting direct and indirect effects of competition between recovering wolves and pumas over prey. Our results emphasize the importance of understanding the synergistic effects of existing management strategies and the recovery of large, dominant carnivores to effectively conserve subordinate, hunted carnivores in human-dominated landscapes.


2020 ◽  
Author(s):  
LM Elbroch ◽  
L Marescot ◽  
H Quigley ◽  
D Craighead ◽  
Heiko Wittmer

© 2018 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. Humans are primary drivers of declining abundances and extirpation of large carnivores worldwide. Management interventions to restore biodiversity patterns, however, include carnivore reintroductions, despite the many unresolved ecological consequences associated with such efforts. Using multistate capture–mark–recapture models, we explored age-specific survival and cause-specific mortality rates for 134 pumas (Puma concolor) monitored in the Greater Yellowstone Ecosystem during gray wolf (Canis lupus) recovery. We identified two top models explaining differences in puma survivorship, and our results suggested three management interventions (unsustainable puma hunting, reduction in a primary prey, and reintroduction of a dominant competitor) have unintentionally impacted puma survival. Specifically, puma survival across age classes was lower in the 6-month hunting season than the 6-month nonhunting season; human-caused mortality rates for juveniles and adults, and predation rates on puma kittens, were higher in the hunting season. Predation on puma kittens, and starvation rates for all pumas, also increased as managers reduced elk (Cervus elaphus) abundance in the system, highlighting direct and indirect effects of competition between recovering wolves and pumas over prey. Our results emphasize the importance of understanding the synergistic effects of existing management strategies and the recovery of large, dominant carnivores to effectively conserve subordinate, hunted carnivores in human-dominated landscapes.


2008 ◽  
Vol 122 (1) ◽  
pp. 76 ◽  
Author(s):  
Michael D. Jimenez ◽  
Valpa J. Asher ◽  
Carita Bergman ◽  
Edward E. Bangs ◽  
Susannah P. Woodruff

Four cases where large predators caused Grey Wolf (Canis lupus) mortality are recorded. We describe two incidents of Cougars (Puma concolar) killing Wolves in Montana and one incident of a Cougar killing a Wolf in Alberta. We report the first recorded incident of a Grizzly Bear (Ursus arctos) killing a Wolf in the western United States.


2018 ◽  
Vol 96 (7) ◽  
pp. 760-768 ◽  
Author(s):  
J.A. Dellinger ◽  
C.R. Shores ◽  
M. Marsh ◽  
M.R. Heithaus ◽  
W.J. Ripple ◽  
...  

There is growing recognition that humans may mediate the strength and nature of the ecological effects of large predators. We took advantage of ongoing gray wolf (Canis lupus Linnaeus, 1758) recolonization in Washington, USA, to contrast adult survival rates and sources of mortality for mule deer (Odocoileus hemionus (Rafinesque, 1817)) and white-tailed deer (Odocoileus virginianus (Zimmermann, 1780)) in areas with and without wolf packs in a managed landscape dominated by multiple human uses. We tested the hypothesis that the addition of wolves to the existing predator guild would augment predator-induced mortality rates for both ungulates. Source of mortality data from adult mule deer and white-tailed deer, respectively, revealed that wolf-related mortality was low compared with that inflicted by other predators or humans. Predator-caused mortality was largely confined to winter. There was little effect of wolf presence on adult deer mortality rates, and there was no difference in mortality between the two deer species relative to wolf-free or wolf-occupied sites. Although this study occurred early in wolf recovery in Washington, our results differ from those demonstrated for gray wolves in protected areas. Thus, we encourage further investigation of effects of direct predation by recolonizing large carnivores on prey in human-dominated landscapes.


2006 ◽  
Vol 120 (1) ◽  
pp. 61 ◽  
Author(s):  
Heather M. Bryan ◽  
Chris T. Darimont ◽  
Thomas E. Reimchen ◽  
Paul C. Paquet

Within populations, different age classes often consume dissimilar resources, and provisioning of juveniles by adults is one mechanism by which this can occur. Although the diet of Gray Wolves (Canis lupus) has been studied extensively, the diet of pups is largely unknown. We examined faeces deposited by altricial pups and adult providers during the first two months following birth at two den sites over two years on the central coast of British Columbia, Canada. Pups and adult wolves consumed similar species, and Black-tailed Deer (Odocoileus hemionus) constituted most of the diet for both age groups. Pup and adult diet, however, diverged. Specifically, adult deer occurred significantly less frequently in the diet of pups than in the diet of adult wolves, which suggests that adults selectively provisioned pups. We speculate that this may relate to adaptive strategies of adult wolves to provide their offspring with food of optimal nutritional value or reduced parasitic burden, and/or logistic factors associated with provisioning such as prey transportability and availability.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e4010 ◽  
Author(s):  
Anna Kusler ◽  
L. Mark Elbroch ◽  
Howard Quigley ◽  
Melissa Grigione

As technology has improved, our ability to study cryptic animal behavior has increased. Bed site selection is one such example. Among prey species, bed site selection provides thermoregulatory benefits and mitigates predation risk, and may directly influence survival. We conducted research to test whether a subordinate carnivore also selected beds with similar characteristics in an ecosystem supporting a multi-species guild of competing predators. We employed a model comparison approach in which we tested whether cougar (Puma concolor) bed site attributes supported the thermoregulatory versus the predator avoidance hypotheses, or exhibited characteristics supporting both hypotheses. Between 2012–2016, we investigated 599 cougar bed sites in the Greater Yellowstone Ecosystem and examined attributes at two scales: the landscape (second-order,n = 599) and the microsite (fourth order,n = 140). At the landscape scale, cougars selected bed sites in winter that supported both the thermoregulatory and predator avoidance hypotheses: bed sites were on steeper slopes but at lower elevations, closer to the forest edge, away from sagebrush and meadow habitat types, and on southern, eastern, and western-facing slopes. In the summer, bed attributes supported the predator avoidance hypothesis over the thermoregulation hypothesis: beds were closer to forest edges, away from sagebrush and meadow habitat classes, and on steeper slopes. At the microsite scale, cougar bed attributes in both the winter and summer supported both the predator avoidance and thermoregulatory hypotheses: they selected bed sites with high canopy cover, high vegetative concealment, and in a rugged habitat class characterized by cliff bands and talus fields. We found that just like prey species, a subordinate predator selected bed sites that facilitated both thermoregulatory and anti-predator functions. In conclusion, we believe that measuring bed site attributes may provide a novel means of measuring the use of refugia by subordinate predators, and ultimately provide new insights into the habitat requirements and energetics of subordinate carnivores.


Author(s):  
Samuel D. Hervey ◽  
Linda Y. Rutledge ◽  
Brent R. Patterson ◽  
Mark C. Romanski ◽  
John A. Vucetich ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document