Paleogeography of the Matapédia basin in the Gaspé Appalachians: initiation of the Gaspé Belt successor basin

2004 ◽  
Vol 41 (5) ◽  
pp. 553-570 ◽  
Author(s):  
Michel Malo

The Matapédia basin consists of the uppermost Ordovician – lowermost Silurian deep-water, fine-grained carbonate–siliciclastic rocks of the Honorat (Garin Formation) and Matapédia groups (Pabos and White Head formations), the lower rock assemblage of the Gaspé Belt in the Gaspé Appalachians. Paleogeographic maps of eight time slices from the Caradocian to the Llandoverian are presented to better understand the tectonosedimentary evolution of the Matapédia basin. Deposition evolved from siliciclastic (Garin Fm.) to argillaceous limestones (Pabos Fm.), to limestones (White Head Fm.). The overall change from terrigenous (Garin Fm.) to limestone facies (White Head Fm.) reflects a change in the source area. Paleocurrent directions and composition of sandstones indicate an orogenic source area to the south for the Garin Formation, which is believed to be the inliers of the Humber and Dunnage zones in the southern Gaspé and New Brunswick Appalachians. Lime muds deposited by turbidity currents coming from the north suggest the Anticosti active carbonate platform as the source area for the White Head Formation. The Matapédia basin was filled from south to north. First deposits, the Garin Formation, occurred south of the Taconian thrust sheets (Humber Zone) and also south of the Grenville basement. This region was the domain of the Ordovician Iapetus Ocean (Dunnage Zone). The northern limit of the basin migrated northward during deposition of the Matapédia Group in Ashgillian–Llandoverian times and reached its actual northern limit at the very end of the Llandoverian (C6), when siliciclastic facies of the lower Chaleurs Group were deposited.

2018 ◽  
Vol 55 (1) ◽  
pp. 33-51 ◽  
Author(s):  
Dominik Letsch ◽  
Mohamed El Houicha ◽  
Albrecht von Quadt ◽  
Wilfried Winkler

This article provides stratigraphic and geochronological data from a central part of Gondwana’s northern margin — the Moroccan Meseta Domain. This region, located to the north of the Anti-Atlas area with extensive outcrops of Precambrian and lower Paleozoic rocks, has hitherto not received much attention with regard to its Precambrian geology. Detrital and volcanic zircon ages have been used to constrain sedimentary depositional ages and crustal affinities of sedimentary source rocks in stratigraphic key sections. Based on this, a four-step paleotectonic evolution of the Meseta Domain from the Ediacaran until the Early Ordovician is proposed. This evolution documents the transition from a terrestrial volcanic setting during the Ediacaran to a short-lived carbonate platform setting during the early Cambrian. The latter then evolved into a rifted margin with deposition of thick siliciclastic successions in graben structures during the middle to late Cambrian. The detritus in these basins was of local origin, and a contribution from a broader source area (encompassing parts of the West African Craton) can only be demonstrated for postrifting, i.e., laterally extensive sandstone bodies that seal the former graben. In a broader paleotectonic context, it is suggested that this Cambrian rifting is linked to the opening of the Rheic Ocean, and that several peri-Gondwanan terranes (Meguma and Cadomia–Iberia) may have been close to the Meseta Domain before drifting, albeit some of them seem to have been constituted by a distinctly different basement.


2002 ◽  
Vol 42 (1) ◽  
pp. 311 ◽  
Author(s):  
R.M. Pollock ◽  
Q. Li ◽  
B. McGowran ◽  
S.C. Lang

The Gambier Sub-basin lies on the southern Australian passive continental margin that formed during continental breakup and seafloor spreading between the Australian and Antarctic plates. In addition to the numerous modern submarine canyons reported on the southern Australian margin, three palaeo-canyon systems have been identified within the Gambier Limestone of the South Australian Gambier Sub-basin. Favourable environmental conditions during the Oligocene and Early Miocene led to deposition of the Gambier Limestone, a widespread, prograding extra-tropical carbonate platform. A world-wide glacio-eustatic sea level fall in the Early Oligocene exposed the shelf in the Gambier Subbasin, causing widespread erosion and minor fluvial incision on the shelf and subsequent formation of nick points at the shelf edge. During the following marine transgression later in the Oligocene, the shelf was inundated and the nick points provided conduits for erosive turbidity currents to enlarge the canyons to the spectacular dimensions observed on seismic data. No less than 20 successive canyon cut and fill events ranging from Late Oligocene to Middle Miocene have been observed and mapped on seismic data across the shelf in the Gambier Sub-basin. The thick, dominantly fine-grained carbonate sheet logically represents a potential regional seal to underlying clastic reservoirs. However, the possibility exists for carbonate reservoir sands to be present within the palaeo-canyons, sealed by surrounding fine-grained carbonates. Although no hydrocarbons have yet been identified in the carbonates of the Gambier Sub-basin, the canyons provide an analogue useful for establishing the scale, internal architecture and geometry of canyon fill systems.


2010 ◽  
Vol 61 (1) ◽  
pp. 55-69 ◽  
Author(s):  
Boris Vrbanac ◽  
Josipa Velić ◽  
Tomislav Malvić

Sedimentation of deep-water turbidites in the SW part of the Pannonian BasinThe Sava Depression and the Bjelovar Subdepression belong to the SW margin of the Pannonian Basin System, which was part of the Central Paratethys during the Pannonian period. Upper Pannonian deposits of the Ivanic-Grad Formation in the Sava Depression include several lithostratigraphic members such as Iva and Okoli Sandstone Member or their lateral equivalents, the Zagreb Member and Lipovac Marlstone Member. Their total thickness in the deepest part of the Sava Depression reaches up to 800 meters, while it is 100-200 meters in the margins of the depression. Deposits in the depression are composed of 4 facies. In the period of turbiditic activities these facies are primarily sedimented as different sandstone bodies. In the Bjelovar Subdepression, two lithostratigraphic members (lateral equivalent) were analysed, the Zagreb Member and Okoli Sandstone Member. The thickness of the Bjelovar Subdepression ranges from 50 meters along the S and SE margins to more than 350 meters along the E margin. Generally, detritus in the north-west part of the analysed area originated from a single source, the Eastern Alps, as demonstrated by sedimentological and physical properties, the geometry of the sandstone body and the fossil content. This clastic material was found to be dispersed throughout the elongated and relatively narrow Sava Depression and in the smaller Bjelovar Subdepression. Sedimentation primarily occurred in up to 200 meters water depth and was strongly influenced by the sub-aqueous paleorelief, which determined the direction of the flow of turbidity currents and sandstone body geometries. The main stream with medium- and fine-grained material was separated by two independent turbiditic flows from N-NW to the SE-E. Variability in the thickness of sandstone bodies is the result of differences in subsidence and cycles of progradation and retrogradation of turbidite fans.


1993 ◽  
Vol 5 (4) ◽  
pp. 379-388 ◽  
Author(s):  
Luis A. Buatois ◽  
Francisco J. Medina

The Lagrelius Point Formation (?Barremian–Aptian) is the basal unit of the Gustav Group and crops out on the north-west coast of James Ross Island. It consists of about 250 m of coarse-grained siliciclastic rocks. The type section of the Lagrelius Point Formation is defined here from just south of Lagrelius Point. The measured section comprises the uppermost 80 m of the unit and mainly consists of clast-supported, boulder, cobble to pebble conglomerates; very coarse to medium-grained sandstones occur rarely. Four sedimentary facies are recognized. A disorganized conglomerate facies (1) is interpreted as having been deposited from non-cohesive debris flows and high density gravelly turbidity currents. Inversely graded conglomerate facies (2) and normally graded to graded stratified conglomerate and pebbly sandstone facies (3) reflect sedimentation from high density gravelly turbidity currents. Massive and parallel stratified sandstone facies (4) is thought to record deposition from high density sandy turbidity currents. Two types of facies assemblages have been recognized. A major channel assemblage, represented by the lower part of the measured section and the minor channel assemblage forming the upper part of the section. The total succession is thought to represent the aggradation of a major submarine braided channel followed by the establishment and subsequent infill of a series of minor channels in a marginal terrace.


2009 ◽  
Vol 180 (5) ◽  
pp. 411-430 ◽  
Author(s):  
Boštjan Rožič

Abstract The succession of the Tolmin Basin forms the foothills of the Julian Alps in northwestern Slovenia. In the Jurassic, it was part of the southern Tethyan passive continental margin. The basin was located between the Dinaric Carbonate Platform in the south and the Julian High in the north. Six sections were studied that encompass the stratigraphic interval from the Toarcian to the lower Tithonian. The basinal background deposits are generally marl, siliceous limestone, and radiolarian chert, whereas in the southern part of the basin resedimented limestones occur. The studied succession lies between the Lower Jurassic Krikov Formation (resedimented and hemipelagic limestones) below and upper Tithonian to Neocomian Biancone Limestone above. Two formations are described in this paper: (1) The Toarcian Perbla Formation was introduced by Cousin [1973] and is revised herein. It is composed of marl and subordinate calcareous shale with rare intercalated calciturbidites. The material was redeposited only within the basin or from its marginal parts. The thickness of the formation varies significantly through the basin from 2 to 135 metres; (2) The Tolmin Formation is herein defined. It is divided into two members. The lower member (Aalenian to lower Bajocian) consists of siliceous limestone and rare chert, whereas the upper member (upper Bajocian to lower Tithonian) is composed of radiolarian chert that locally in the upper part contains abundant marl intercalations. In the southern part of the basin, two intervals of resedimented limestones occur in the Tolmin Formation. The lower interval (lower Bajocian to lower Callovian) is dominated by calcarenite (rich in peloids and ooids) and limestone breccias. The upper interval (upper Kimmeridgian to lower Tithonian) is characterized by calcarenite, composed mostly of intraclasts and bioclasts. The source area of the carbonate material was the Dinaric Carbonate Platform. The correlation of the background sediments with other basins of the western Tethys reveals that (1) the late Toarcian decrease in terrigenous input, the Bajocian change from calcareous to siliceous sedimentation and the late Tithonian onset of carbonate sedimentation are regional and (2) the silica content in the Tolmin Basin was higher than that in the western basins (e.g. the Belluno, Lombardian, Umbria-Marche and Subbetic basins) but lower than that in the Budva Basin. The Bajocian to Callovian resedimented limestones of the Tolmin Basin are much thinner than the corresponding deposits in the Belluno and Budva basins (25 metres vs. up to 600 metres) that bordered the Dinaric Carbonate Platform on the west and southwest respectively. This difference confirms the previously proposed interpretation that most of the carbonate production from the Dinaric Carbonate Platform was transported towards the southwest.


1996 ◽  
Vol 60 (399) ◽  
pp. 317-324 ◽  
Author(s):  
R. A. Ixer ◽  
B. Young ◽  
C. J. Stanley

AbstractBismuthinite-bearing quartz veins from the Alston Block of the North Pennine Orefield are all close to, or above, the Rookhope and Tynehead cupolas of the buried Weardale Granite. They are uniform in composition and paragenesis and are earlier than the main fluorite-baryte-galena-sphalerite mineralization of the orefield. Rhythmical crystallization of quartz, chalcopyrite and minor pyrite is followed by fluorite-quartz-chalcopyrite-minor sphalerite-altered pyrrhotite mineralization. Early tin-bearing (up to 0.29 wt.% Sn) chalcopyrite encloses trace amounts of bismuthinite (Bi2S3), synchysite (CaREE(CO3)F2), argentopentlandite (Ag(FeNi)8S8) (close to being stoichiometric), pyrrhotite, cubanite and cosalite (Pb2Bi2S5), while early pyrite carries monoclinic pyrrhotite (close to Fe7S8) and tungsten-bearing cassiterite (up to 1.03 wt.% WO3). Bismuthinite is macroscopically visible and is associated with native bismuth and small, fine-grained, spherical aggregates that qualitative analysis suggests may be cosalite crystals. Synchysite and more rarely monazite, xenotime and adularia are intergrown with bismuthinite. These mineralogical data form part of the basis for an increasing awareness of the contribution of the Weardale Granite to the early phases of mineralization in the Alston Block.


1874 ◽  
Vol 1 (1) ◽  
pp. 1-2
Author(s):  
Edward Hull

This granite forms an isolated mass, rising into two eminences a few miles south of Louisburg, called Corvock Brack (1287 feet) and Knockaskeheen (1288 feet). It is a greyish granite—generally fine—grained—consisting of quartz, two felspars,—one orthoclase, the other triclinic, probably oligoclase—and dark green mica. In some places there are patches in which the felspar assumes the appearance of “graphic granite.” Numerous boulders of this granite are strewn over the district to the north-west, and on the south side of Knockaskeheen; the rock is traversed by regular joints ranging N. 10 W., along which it splits off into nearly vertical walls. The position of the granite is shown on Griffith's Geological Map of Ireland, and it is surrounded by schistose beds, generally metamorphosed, and probably of Lower Silurian age. The granite itself is of older date than the Upper Llandovery beds, which lie to the southward.


1980 ◽  
Vol 17 (8) ◽  
pp. 1007-1019 ◽  
Author(s):  
Colin F. Klappa ◽  
Paul R. Opalinski ◽  
Noel P. James

Lithostratigraphic nomenclature of early Middle Ordovician strata from western Newfound land is formally revised. The present Table Head Formation is raised to group status and extended to include overlying interbedded terrigenoclastic-rich calcarenites and shales with lime megabreccias. Four new formation names are proposed: Table Point Formation (previously lower Table Head); Table Cove Formation (previously middle Table Head); Black Cove Formation (previously upper Table Head); and Cape Cormorant Formation (previously Caribou Brook formation). The Table Point Formation comprises bioturbated, fossiliferous grey, hackly limestones and minor dolostones; the Table Cove Formation comprises interbedded lime mudstones and grey–black calcareous shales; the Black Cove Formation comprises black graptolitic shales; and the Cape Cormorant Formation comprises interbedded terrigenoclastic and calcareous sandstones, siltstones, and shales, punctuated by massive or thick-bedded lime megabreccias. The newly defined Table Head Group rests conformably or disconformably on dolostones of the Lower Ordovician St. George Group (an upward-migrating diagenetic dolomitization front commonly obscures the contact) and is overlain concordantly by easterly-derived flysch deposits. Upward-varying lithologic characteristics within the Table Head Group result from fragmentation and subsidence of the Cambro-Ordovician carbonate platform and margin during closure of a proto-Atlantic (Iapetus) Ocean.


2017 ◽  
Vol 359 ◽  
pp. 44-61 ◽  
Author(s):  
Camille Frau ◽  
Antoine Pictet ◽  
Jorge E. Spangenberg ◽  
Jean-Pierre Masse ◽  
Anthony J.-B. Tendil ◽  
...  

Author(s):  
A. V. Maslov

Background. The lithogeochemical features of fine-grained detrital rocks (mudstones, shales, and fine-grained siltstones) allow, with a certain degree of success, the main parameters of the formation of sedimentary sequences to be reconstructed. These parameters include (primarily in terms of their REE and Th systematics) the types of river systems supplying thin terrigenous suspension in the sedimentation area: the rivers of the 1st category – large rivers with a catchment area of more than 100,000 km2; 2nd category – rivers feeding on the products of erosion of sedimentary deposits; 3rd category – rivers draining mainly igneous and metamorphic rocks; and 4th category – rivers carrying erosion products of volcanic associations.Aim. To reveal, based on the analysis of interrelationships between such parameters as (La/Yb)N, Eu/Eu* and the Th content, the types of river systems that fed the Jurassic and Lower Cretaceous deposits of the Shaim oil and gas region (OGR) (Sherkalinsky, Tyumen, Abalak and Mulymya formations) and the region of the North Pokachevsky field of the Shirotnoe Priobye region (Sherkalinsky, Tyumen and Bazhenov formations, Lower Cretaceous deposits).Materials and methods. The ICP MS data for almost 100 samples of mudstones and fine-grained clayey siltstones were used to analyse the features of distribution of lanthanides and Th in the Jurassic and Lower Cretaceous clayey rocks of the Shaim OGR and the area of the North Pokachevsky deposits. Individual and average composition points for formations, members and layers were plotted on the (La/Yb)N-Eu/Eu*, (La/Yb)N–Th diagrams developed by us with classification areas of the composition of fine suspended material of modern rivers of different categories.Results and conclusion. The results presented in the article showed that during the formation of the deposits of the Shaim OGR in the Early and Middle Jurassic, erosion affected either mainly sedimentary formations or paleo-catchment areas that were very variegated in their rock composition. In the Late Jurassic, the source area was, most likely, a volcanic province, composed mainly of igneous rocks of the basic composition, and located within the Urals. This conclusion suggested that the transfer of clastic material from the Urals to the Urals part of the West Siberian basin “revived” much earlier than the Hauterivian. The Jurassic-Lower Cretaceous section of the vicinity of the North Pokachevsky field was almost entirely composed of thin aluminosilicaclastics formed due to the erosion of volcanic formations. These volcanic formations were located, as followed from the materials of earlier performed paleogeographic reconstructions, probably within the Altai-Sayan region or Northern Kazakhstan. Thus, the supply of detrital material in the considered territories of the West Siberian basin had a number of significant differences in the Jurassic and early Cretaceous.


Sign in / Sign up

Export Citation Format

Share Document