Multiple Glaciation in Central British Columbia

1971 ◽  
Vol 8 (7) ◽  
pp. 743-752 ◽  
Author(s):  
Howard W. Tipper

During Fraser Glaciation central British Columbia was covered by glacier ice that accumulated in the Coast and Cariboo Mountains, flowed inwardly as a piedmont glacier to the Interior Plateau and thence northeasterly as an ice sheet toward the Rocky Mountains. After withdrawal of the Fraser ice sheet a limited re-advance of ice from Cariboo and Coast Mountains took place but not as a coalescent ice sheet. Drumlinoid forms, eskers, meltwater channels, kettled deposits, and lacustrine deposits provide ample evidence from which a glacial history of the area can be deduced. Although Fraser Glaciation is not believed to have culminated as an ice dome over central British Columbia, there is some evidence to suggest that earlier glaciations did form such a dome from which ice flowed radially over the Coast and Rocky Mountains.

1980 ◽  
Vol 13 (3) ◽  
pp. 322-326 ◽  
Author(s):  
J. J. Clague ◽  
J. E. Armstrong ◽  
W. H. Mathews

AbstractRadiocarbon dates from critical stratigraphic localities in southern British Columbia indicate that the growth history of the late Wisconsin Cordilleran Ice Sheet was different from that of most of the Laurentide Ice Sheet to the east. Much of southern British Columbia remained free of ice until after about 19,000 to 20,000 yr ago; only adjacent to the Coast Mountains is there a record of lowland glacier tongues in the interval 22,000 to 20,000 yr B.P. A major advance to the climax of late Wisconsin Cordilleran glacier ice in the northern States was not begun until after about 18,000 yr B.P. in the southwest of British Columbia and after about 17,500 yr B.P. in the southeast. The rate of glacier growth must have been very rapid in the two to three millennia prior to the climax, which has been dated in western Washington at shortly after 15,000 yr B.P.


2007 ◽  
Vol 26 (3-4) ◽  
pp. 479-493 ◽  
Author(s):  
Gerald Osborn ◽  
Brian Menounos ◽  
Johannes Koch ◽  
John J. Clague ◽  
Vanessa Vallis

2017 ◽  
Vol 43 (2) ◽  
pp. 449 ◽  
Author(s):  
J.J. Clague

Nearly all of what is now British Columbia and adjacent areas were covered by an ice sheet at the maximum of the Last Glaciation (MIS 2) about 18,000 years ago. By 11,000 years ago, the Cordilleran Ice Sheet had disappeared, a victim of warming climate, eustatic sea-level rise along its western margin, and perhaps a reduction in precipitation. Deglaciation proceeded by frontal retreat at the periphery of the ice sheet and by downwasting, complex frontal retreat, and localized stagnation in its interior areas. The chronology of deglaciation is constrained, albeit with inherent dating errors, by AMS radiocarbon and 10Be surface exposure ages. High-elevation sites at the western margin of the British Columbia Interior Plateau, east of the Coast Mountains, became ice-free between about 15,000 and 12,000 years ago. Ice cover in the southern Coast Mountains was sufficiently extensive during the Younger Dryas Chronozone (12,900-11,700 years ago) that glaciers advanced into low-lying areas north and east of Vancouver. At the same time, however, a labyrinth of dead or dying tongues of glacier ice covered some interior valleys. By 11,000 years ago, ice cover in the Canadian Cordillera was no more extensive than it is today.


2010 ◽  
Vol 29 (25-26) ◽  
pp. 3630-3643 ◽  
Author(s):  
Arjen P. Stroeven ◽  
Derek Fabel ◽  
Alexandru T. Codilean ◽  
Johan Kleman ◽  
John J. Clague ◽  
...  

1888 ◽  
Vol 5 (8) ◽  
pp. 347-350 ◽  
Author(s):  
Geo. M. Dawson

Previous observations in British Columbia have shown that at one stage in the Glacial period—that of maximum glaciation—a great confluent ice-mass has occupied the region which may be named the Interior Plateau, between the Coast Mountains and Gold and Eocky Mountain Kanges. From the 55th to the 49th parallel this great glacier has left traces of its general southward or southeastward movement, which are distinct from those of subsequent local glaciers. The southern extensions or terminations of this confluent glacier, in Washington and Idaho Territories, have quite recently been examined by Mr. Bailley Willis and Prof. T. C. Chamberlin, of the U.S. Geological Survey. There is, further, evidence to show that this inland-ice flowed also, by transverse valleys and gaps, across the Coast Range, and that the fiords of the coast were thus deeply filled with glacier-ice which, supplemented by that originating on the Coast Range itself, buried the entire great valley which separates Vancouver Island from the mainland and discharged seaward round both ends of the island. Further north, the glacier extending from the mainland coast touched the northern shores of the Queen Charlotte Islands.


1994 ◽  
Vol 20 ◽  
pp. 55-60
Author(s):  
Anja L.L.M. Verbers ◽  
Volkmar Damm

Glacio-geological field work and radar ice-thickness sounding were carried out in the area between David and Mawson Glaciers. A subglacial topographic map has been compiled from radio-echo-sounding data. The northern part of this map shows that the trench of David Glacier reaches a depth of more than 1000 m below sea level. The area south of David Glacier comprises a landscape of nunatak clusters dissected by glaciated valleys with ice thicknesses as much as 800 m. Subglacial cirques occur at the outer margins of the nunatak clusters. A model for the regional glacial history is proposed. It starts with a major deglaciation in the Pliocene, which results in marine transgression in basins west of the Transantarctic Mountains. During the late Pliocene, the ice advanced towards the northeast, depositing a thin layer of (Sirius Group) till containing reworked mid-Pliocene marine diatoms. Due to accelerated mountain uplift, the ice cut iIlto the pre-Pliocene peneplain, eroding broad valleys. A period of ice-sheet retreat followed to expose a landscape of large nunataks separated by wide valleys. During this period, local cirque glaciation occurred. When the ice sheet advanced again, another phase of uplift forced the glaciers to cut deeper into the valleys. Probably since the Last Glacial Maximum the ice surface has lowered by about 100 m.


1994 ◽  
Vol 20 ◽  
pp. 55-60
Author(s):  
Anja L.L.M. Verbers ◽  
Volkmar Damm

Glacio-geological field work and radar ice-thickness sounding were carried out in the area between David and Mawson Glaciers. A subglacial topographic map has been compiled from radio-echo-sounding data. The northern part of this map shows that the trench of David Glacier reaches a depth of more than 1000 m below sea level. The area south of David Glacier comprises a landscape of nunatak clusters dissected by glaciated valleys with ice thicknesses as much as 800 m. Subglacial cirques occur at the outer margins of the nunatak clusters. A model for the regional glacial history is proposed. It starts with a major deglaciation in the Pliocene, which results in marine transgression in basins west of the Transantarctic Mountains. During the late Pliocene, the ice advanced towards the northeast, depositing a thin layer of (Sirius Group) till containing reworked mid-Pliocene marine diatoms. Due to accelerated mountain uplift, the ice cut iIlto the pre-Pliocene peneplain, eroding broad valleys. A period of ice-sheet retreat followed to expose a landscape of large nunataks separated by wide valleys. During this period, local cirque glaciation occurred. When the ice sheet advanced again, another phase of uplift forced the glaciers to cut deeper into the valleys. Probably since the Last Glacial Maximum the ice surface has lowered by about 100 m.


2001 ◽  
Vol 38 (4) ◽  
pp. 719-731 ◽  
Author(s):  
A Plouffe ◽  
V M Levson

The Quaternary stratigraphy of the Nechako River – Cheslatta Lake area of central British Columbia is described and interpreted to reconstruct the late Quaternary history of the region. Exposures of glacial and nonglacial sediments deposited prior to the last glaciation (Fraser) are limited to three sites. Pollen assemblages from pre-Fraser nonglacial sediments at two of these sites reveal forested conditions around 39 000 BP. During the advance phase of the Fraser Glaciation, glacial lakes were ponded when trunk glaciers blocked some tributary valleys. Early in the glaciation, the drainage was free in easterly draining valleys. Subsequently, the easterly drainage was blocked either locally by sediments and ice or as a result of impoundment of the Fraser River and its tributaries east of the study area. Ice generally moved east and northeast from accumulation zones in the Coast Mountains. Ice flow was influenced by topography. Major late-glacial lakes developed in the Nechako River valley and the Knewstubb Lake region because potential drainage routes were blocked by ice.


1962 ◽  
Vol 4 (32) ◽  
pp. 173-195 ◽  
Author(s):  
J. T. Hollin

AbstractThe Antarctic Ice Sheet responds quickly to regime changes, and time lags in its fluctuations are relatively small. During the Pleistocene glacial stages of the Northern Hemisphere, world-wide temperature reductions reduced the plasticity of the ice sheet and made it thicker. The amount of thickening depended on the conditions at the ice base but it was small, for mechanical and thermal reasons. Also, during the northern stages, accumulation over Antarctica was probably less than now, but this too had little effect on the thickness of the ice sheet. The mass budget of the ice sheet alone, without the ice shelves, probably remained strongly positive; the ice sheet probably existed throughout the Pleistocene and is unlikely to disappear in the future. The area of the ice sheet is determined chiefly by the elevation of the “grounding line”, where the peripheral ice cliffs and ice shelves begin to float. During the northern stages, world-wide lowerings of sea-level displaced the grounding line downwards and northwards, and allowed the ice sheet to advance by amounts which account for nearly all the evidence for previous greater glaciations. In summary, the glacial history of most ice-free areas is governed not so much by climatic as by sea-level changes. Therefore, Antarctic glacial fluctuations were dependent on and in phase with those of the Northern Hemisphere. The field evidence from Antarctica has little bearing on the ultimate causes of glacial fluctuations, which might however be determined by field work on the planet Mars.


Sign in / Sign up

Export Citation Format

Share Document