A Spinner Magnetometer for Susceptibility Anisotropy in Rocks

1975 ◽  
Vol 12 (8) ◽  
pp. 1448-1464 ◽  
Author(s):  
P. C. Boetzkes ◽  
D. I. Gough

The study of rock fabric through the anisotropy of magnetic susceptibility requires instruments capable of high-precision measurement of weakly magnetic sedimentary rocks. The magnetometer here described is such an instrument. The rock specimen spins on a shaft in an air-gap in a closed magnetic circuit of permalloy with barium ferrite permanent magnets. The air-gap is designed to apply to the rotating specimen a very uniform flux density with a value of 0.115 tesla when the magnets are saturated. Magnetizing coils integral to the transducer are used to magnetize or demagnetize the permanent magnets. Coils in the specimen gap detect specimen magnetization parallel and perpendicular to the applied field. The magnetic circuit forms a balanced bridge and allows alternative modes of transduction. The design is such that Nyquist noise is the largest noise contributed by the magnetic circuit and is smaller than the Johnson noise from the detector coils. Measured noise from the completed transducer is only 4.7 dB above the Johnson noise. The limiting sensitivity is, however, set by the time variation of anisotropy signal from the shaft and empty specimen holder. This limit is at 1.5 × 10−9 mksu (1.2 × 10−10 emu/cm3), so that relative anisotropy of 0.01% can be detected in a weakly magnetic sandstone of bulk susceptibility 1.5 × 10−5 mksu. Calibration is discussed and sample measurements are presented. Construction of the transducer required solution of many technological problems, of which the greatest was encapsulation to suppress all vibration of parts without strain-induced loss of permeability of the permalloy. The more important of the solutions found are outlined briefly.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 969-975
Author(s):  
Hiroaki Kikuchi ◽  
Yuki Sato

We investigated effects of contact gap on magnetic nondestructive evaluation technique using a magnetic single-yoke probe. Firstly, we evaluated hysteresis curves and impedance related to permeability of the material measured by a single-yoke probe, when an air gap length between the probe and specimens changes. The hysteresis curve gradually inclines to the axis of the magneto-motive force and magneto-motive force at which the magnetic flux is 0 decreases with increasing the gap length. The effective permeability also decreases with increasing the gap thickness. The incremental of gap thickness increases the reluctance inside the magnetic circuit composed of the yoke, specimen and gap, which results in the reduction of flux applying to specimen.



Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2522
Author(s):  
Guangdou Liu ◽  
Shiqin Hou ◽  
Xingping Xu ◽  
Wensheng Xiao

In the linear and planar motors, the 1D Halbach magnet array is extensively used. The sinusoidal property of the magnetic field deteriorates by analyzing the magnetic field at a small air gap. Therefore, a new 1D Halbach magnet array is proposed, in which the permanent magnet with a curved surface is applied. Based on the superposition of principle and Fourier series, the magnetic flux density distribution is derived. The optimized curved surface is obtained and fitted by a polynomial. The sinusoidal magnetic field is verified by comparing it with the magnetic flux density of the finite element model. Through the analysis of different dimensions of the permanent magnet array, the optimization result has good applicability. The force ripple can be significantly reduced by the new magnet array. The effect on the mass and air gap is investigated compared with a conventional magnet array with rectangular permanent magnets. In conclusion, the new magnet array design has the scalability to be extended to various sizes of motor and is especially suitable for small air gap applications.



2013 ◽  
Vol 473 ◽  
pp. 39-45 ◽  
Author(s):  
Guo Wei Zhao ◽  
Yong Chen ◽  
De Yong Li ◽  
Bin Tang

The aim was to analyze failure mechanism of electromagnetic relay caused by mechanical impact. The principle of electromagnetic relays was studied and the effect of mechanical impact on electromagnetic relays was analyzed in this paper. Based on the established magnetic circuit model, the relationship of the magnetic field strength, the electromagnetic attraction and the impact damage degree was studied. Then, the damage intensity of mechanical impact on magnetic circuit was decided. Afterwards, the structure of electromagnetic relays was improved, and the mechanical impact simulation was studied by ANSYS. The results show that the uncontrollability of electromagnetic relay is mainly caused by air gap, which is aroused by mechanical impact; in addition, the size of air gap is inversely proportional to electromagnetic attraction force. Moreover, the improved structure of relays can increase impact resistance and broaden the scope of engineering application of electromagnetic relay.





1995 ◽  
pp. 343-346
Author(s):  
Wagner Juraj ◽  
Maga Dušan ◽  
Guba Roman ◽  
Führichová Renáta ◽  
Opaterný Jozef


2018 ◽  
Vol 67 (3) ◽  
pp. 71-81
Author(s):  
Krzysztof Just ◽  
Paweł Piskur

In this paper, the static characteristics as a function of changes in geometric dimensions of the stator magnetic circuit of the linear stepper actuator with permanent magnets is presented. The stator is built from a series of cylindrical coils encapsulated with ferromagnetic case. The runner is made of permanent magnet rings connected with ferromagnetic spacers. The electromagnetic interac-tion between the stator and the runner for the sequential supply of coils was analyzed. The electro-magnetic force as a function of the geometry of the coils and the ferromagnetic housing for the con-stant graduation of the runner was determined. The maximum, minimum, and average values of the electromagnetic force as a function of the geometric independent variable were determined. The ratio of the mean force to the maximum, and mechanical work calculated as the integral of the force on the path of the runner was adopted as the evaluation criteria. A comparison between the maximum, average and relative values of forces as a function of the geometric dimensions of the stator was made. Keywords: modelling and simulation, linear actuator, finite element method, field calculations, cogging force, magnetic force.



1970 ◽  
Vol 110 (4) ◽  
pp. 25-29 ◽  
Author(s):  
C. Akuner ◽  
E. Huner

In this study, the axial flux permanent magnet motor and the length range of the air gap between rotors was analyzed and the appropriate length obtained. NdFeB permanent magnets were used in this study. Permanent magnets can change the characteristics of the motor's torque. However, the distance between permanent magnets and the air gap will remain constant for each magnet. The impact of different magnet angles for the axial flux permanent magnet motor and other motor parameters was examined. To this aim, the different angles and torque values of the magnetic flux density were calculated using the finite element method of analysis with the help of Maxwell 3D software. Maximum torque was obtained with magnet angles of 21°, 26°, 31.4°, and 34.4°. Additionally, an important parameter for the axial flux permanent magnet motor in terms of the air gap flux was analyzed. Minimum flux change was obtained with a magnet angle of 26°. The magnetic flux of the magnet-to-air-gap is under 0.5 tesla. Given the height of the coil, the magnet-to-air-gap distance most suitable for the axial flux permanent magnet motor was 4 mm. Ill. 11, bibl. 4, tabl. 2 (in English; abstracts in English and Lithuanian).http://dx.doi.org/10.5755/j01.eee.110.4.280



2000 ◽  
Vol 36 (6) ◽  
pp. 1547-1554 ◽  
Author(s):  
M. Olaru ◽  
M.I. McGelp ◽  
T.J.E. Miller ◽  
J.H. Davies ◽  
K.F. Rasmussen


Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3418
Author(s):  
Stanisław J. Hajnrych ◽  
Rafał Jakubowski ◽  
Jan Szczypior

The paper presents the results of a 3D FEA simulations series of a dual air gap Axial Flux (AF) electric machine with Surface-Mounted Permanent magnets (SPM) with parameterized rotor geometry. Pole number and pole span influence on back-emf, as well as cogging and ideal electromagnetic torques angular characteristics were investigated for each model with the common segmented yokeless stator with concentric windings. Synchronous and BLDC drives supply were used to estimate back-emf distortion. Ideal torque ripple and cogging torque spectra were analyzed. It was concluded that the number of poles closer to the number of slots with ~0.8 pole span tends to yield good torque density with the lowest cogging torque, back-emf distortion and ideal torque ripple.



2020 ◽  
Vol 29 (8) ◽  
pp. 085054
Author(s):  
Shaoqi Li ◽  
Peter A Watterson ◽  
Yancheng Li ◽  
Quan Wen ◽  
Jianchun Li


Sign in / Sign up

Export Citation Format

Share Document