Evidence for late rifting of the Cordilleran margin outlined by stratigraphic division of the Lower Cambrian Gog Group, Rocky Mountain Main Ranges, British Columbia and Alberta

1995 ◽  
Vol 32 (7) ◽  
pp. 860-874 ◽  
Author(s):  
W. Henry Lickorish ◽  
Philip S. Simony

The Lower Cambrian McNaughton Formation of the Gog Group occupies a stratigraphic position transitional between the rift-related rocks of the underlying Upper Proterozoic Miette Group, and the overlying Paleozoic passive margin succession. A major regional unconformity, overlain by a distinctive orthoquartzite marker, has been traced within the McNaughton Formation. This unconformity has been shown to truncate normal faults active during the deposition of the lower McNaughton Formation. The lower McNaughton Formation consists of mature, coarse-grained fluvial sediments accumulated in hanging-wall half-grabens of active normal faults. These faults represent the final stage of rifting on the continental margin. The unconformity on the footwall blocks of these faults can be traced into the hanging wall, and is overlain by the shoreface sediments of the transgressive upper McNaughton Formation. Formal subdivision of the McNaughton Formation into four lithostratigraphic members is proposed, in order to describe this geometry.

1988 ◽  
Vol 25 (1) ◽  
pp. 1-19 ◽  
Author(s):  
William J. Devlin ◽  
Gerard C. Bond

The uppermost Proterozoic–Lower Cambrian Hamill Group of southeastern British Columbia contains geologic evidence for a phase of extensional tectonism that led directly to the onset of thermally controlled subsidence in the Cordilleran miogeocline. Moreover, the Hamill Group contains the sedimentological record of the passage of the ancient passive margin from unstable tectonic conditions associated with rifting and (or) the earliest phases of thermal subsidence to post-rift conditions characterized by stabilization of the margin and dissipation of the thermal anomaly generated during the rift phase (the rift to post-rift transition). Widespread uplift that occurred prior to and during the deposition of the lower Hamill Group is indicated by an unconformable relation with the underlying Windermere Supergroup and by stratigraphic relations between Middle and Upper Proterozoic strata and unconformably overlying upper Lower Cambrian quartz arenites (upper Hamill Group) in the southern borderlands of the Hamill basin. In addition, the coarse grain size, the feldspar content, the depositional setting, and the inferred provenance of the lower Hamill Group are all indicative of the activation of basement sources along the margins of the Hamill basin. Geologic relations within the Hamill Group that provide direct evidence for extensional tectonism include the occurrence of thick sequences of mafic metavolcanics and rapid vertical facies changes that are suggestive of syndepositional tectonism.Evidence of extensional tectonism in the Hamill Group directly supports inferences derived from tectonic subsidence analyses that indicate the rift phase that immediately preceded early Paleozoic post-rift cooling could not have occurred more than 10–20 Ma prior to 575 ± 25 Ma. These data, together with recently reported isotopic data that suggest deposition of the Windermere Supergroup began ~730–770 Ma, indicate that the rift-like deposits of the Windermere Supergroup are too old to represent the rifting that led directly to the deposition of the Cambro-Ordovician post-rift strata. Instead, Windermere sedimentation was apparently initiated by an earlier rift event, probably of regional extent, that was part of a protracted, episodic rift history that culminated with continental breakup in the latest Proterozoic – Early Cambrian.


Geosphere ◽  
2019 ◽  
Vol 15 (5) ◽  
pp. 1577-1597
Author(s):  
Andrew S. Canada ◽  
Elizabeth J. Cassel ◽  
Allen J. McGrew ◽  
M. Elliot Smith ◽  
Daniel F. Stockli ◽  
...  

Abstract Within extended orogens, records that reflect the driving processes and dynamics of early extension are often overprinted by subsequent orogenic collapse. The Copper Mountains of northeastern Nevada preserve an exceptional record of hinterland extensional deformation and high-elevation basin formation, but current geochronology and thermochronology are insufficient to relate this to broader structural trends in the region. This extension occurred concurrent with volcanism commonly attributed to Farallon slab removal. We combine thermochronology of both synextensional hanging-wall strata and footwall rocks to comprehensively evaluate the precise timing and style of this deformation. Specifically, we apply (U-Th)/(He-Pb) double dating of minerals extracted from Eocene–Oligocene Copper Basin strata with multi-mineral (U-Th)/He and 40Ar/39Ar thermochronology of rocks sampled across an ∼20 km transect of the Copper Mountains. We integrate basement and detrital thermochronology records to comprehensively evaluate the timing and rates of hinterland extension and basin sedimentation. Cooling and U-Pb crystallization ages show the Coffeepot Stock, which spans the width of the Copper Mountains, was emplaced at ca. 109–108 Ma, and then cooled through the 40Ar/39Ar muscovite and biotite closure temperatures by ca. 90 Ma, the zircon (U-Th)/He closure temperature between ca. 90 and 70 Ma, and the apatite (U-Th)/He closure temperature between 43 and 40 Ma. Detrital apatite and zircon (U-Th)/(He-Pb) double dating of late Eocene fluvial and lacustrine strata of the Dead Horse Formation and early Oligocene fluvial strata of the Meadow Fork Formation, both deposited in Copper Basin, shows that Early Cretaceous age detrital grains have a cooling history that is analogous to proximal intrusive rocks of the Coffeepot Stock. At ca. 38 Ma, cooling and depositional ages for Copper Basin strata reveal rapid exhumation of proximal source terranes (cooling rate of ∼37 °C/m.y.); in these terranes, 8–12 km of slip along the low-angle Copper Creek normal fault exhumed the Coffeepot Stock in the footwall. Late Eocene–early Oligocene slip along this fault and an upper fault splay, the Meadow Fork fault, created a half graben that accommodated ∼1.4 km of volcaniclastic strata, including ∼20 m of lacustrine strata that preserve the renowned Copper Basin flora. Single-crystal sanidine 40Ar/39Ar geochronology of interbedded tuffs in Copper Basin constrains the onset of rapid exhumation to 38.0 ± 0.9 Ma, indicating that surface-breaching extensional deformation was coincident with intense proximal volcanism. Coarse-grained syndeformational sediments of the Oligocene Meadow Fork Formation were deposited just prior to formation of an extensive regional Oligocene–Miocene unconformity and represent one of the most complete hinterland stratigraphic records of this time. We interpret this history of rapid late Eocene exhumation across the Copper Mountains, coeval volcanism, and subsequent unconformity formation to reflect dynamic and thermal effects associated with Farallon slab removal. The final phase of extension is recorded by late, high-angle normal faults that cut and rotate the early middle Miocene Jarbidge Rhyolite sequence, deposited unconformably in the hanging wall. These results provide an independent record of episodic Paleogene to Miocene exhumation documented in Cordilleran metamorphic core complexes and establish that substantial extension occurred locally in the hinterland prior to province-wide Miocene extensional break-up.


2021 ◽  
Vol 91 (3) ◽  
pp. 317-347
Author(s):  
ANTOINE DILLINGER ◽  
ANNETTE D. GEORGE ◽  
ROMAIN VAUCHER

Abstract Tectonic activity in extensional basins has a profound control on accommodation and sediment supply through the interplay between footwall uplift and hanging-wall subsidence, and thus largely influences the three-dimensional architecture of syn-rift sequences. This is emphasized in areas close to major rift-border faults, where steep coastal reliefs and fluvial gradients produce compound facies zonation and stratigraphic styles with strong lateral variability. The lower Permian High Cliff Sandstone was deposited in an array of shallow marine environments along the margin of the northern Perth Basin during a protracted late Paleozoic rifting episode in Western Australian basins. The formation is composed of fluvio-deltaic and nearshore strata sharply overlying a thick succession of offshore mudstone that was deposited during a phase of tectonic quiescence. This basal contact likely reflects submarine erosion and is, therefore, interpreted as a regressive surface of marine erosion generated in response to forced regression. The facies arrangement consisting of interbedded sandstone, conglomerate, and heterolithic facies chiefly records the evolution of a low- to high-gradient paleoshoreline punctuated by coastal streams, steep sea cliffs, and back-barrier lagoons. Extraformational outsized clasts were probably emplaced by the erosion of exhumed basement and older sedimentary rocks through fluvial incision, wave sapping, or landsliding. The along-strike variability between low- and high-gradient shoreline deposits indicates a dynamic depositional setting with a complex tectonic influence. The basal regressive surface of marine erosion is attributed to footwall uplift during the early reactivation stage of basin-bounding normal faults and, therefore, records the initiation of a new syn-rift phase in the northern Perth Basin.


1988 ◽  
Vol 25 (11) ◽  
pp. 1906-1911 ◽  
Author(s):  
William J. Devlin ◽  
Hannes K. Brueckner ◽  
Gerard C. Bond

New Sm–Nd and Rb–Sr data are presented from the volcanic member of the Huckleberry Formation, a unit near the base of the upper Proterozoic Windermere Supergroup in northeastern Washington. The isotopic data are compatible with a rift setting during deposition of Windermere strata. A best-fit line through all the data yields an age of 795 Ma with a large error of ±115 Ma (2σ). However, a preliminary Sm–Nd mineral–whole-rock age of 762 ± 44 Ma (2σ) obtained from a least-altered basalt is within error of other age information from the Canadian Cordillera that broadly constrains the initiation of Windermere deposition to ~750 (±30) Ma. A synthesis of isotopic data, of the results of tectonic subsidence analyses, and of geologic relations within the Windermere Supergroup and the immediately overlying uppermost Proterozoic – Lower Cambrian strata leads to the conclusion that the Windermere Supergroup does not represent the rift deposits that led directly to the initiation of the early Paleozoic miogeocline. Instead, Windermere sedimentation occurred as a result of a protracted, episodic rift history that culminated with latest Proterozoic – Early Cambrian rifting associated with the onset of thermal subsidence in the ancient passive margin.


1992 ◽  
Vol 13 (1) ◽  
pp. 1-4 ◽  
Author(s):  
B. J. Bluck ◽  
W. Gibbons ◽  
J. K. Ingham

AbstractThe Precambrian and Lower Palaeozoic foundations of the British Isles may be viewed as a series of suspect terranes whose exposed boundaries are prominent fault systems of various kinds, each with an unproven amount of displacement. There are indications that they accreted to their present configuration between late Precambrian and Carboniferous times. From north to south they are as follows.In northwest Scotland the Hebridean terrane (Laurentian craton in the foreland of the Caledonian Orogen) comprises an Archaean and Lower Proterozoic gneissose basement (Lewisian) overlain by an undeformed cover of Upper Proterozoic red beds and Cambrian to early mid Ordovician shallow marine sediments. The terrane is cut by the Outer Isles Thrust, a rejuvenated Proterozoic structure, and is bounded to the southeast by the Moine Thrust zone, within the hanging wall of which lies a Proterozoic metamorphic complex (Moine Supergroup) which constitutes the Northern Highlands terrane. The Moine Thrust zone represents an essentially orthogonal closure of perhaps 100 km which took place during Ordovician-Silurian times (Elliott & Johnson 1980). The Northern Highlands terrane records both Precambrian and late Ordovician to Silurian tectonometamorphic events (Dewey & Pankhurst 1970) and linkage with the Hebridean terrane is provided by slices of reworked Lewisian basement within the Moine Supergroup (Watson 1983).To the southwest of the Great Glen-Walls Boundary Fault system lies the Central Highlands (Grampian) terrane, an area dominated by the late Proterozoic Dalradian Supergroup which is underlain by a gneissic complex (Central Highland Granulites) that has been variously interpreted as either older


SEG Discovery ◽  
2000 ◽  
pp. 1-15
Author(s):  
IAN R. GENDALL ◽  
LUIS A. QUEVEDO ◽  
RICHARD H. SILLITOE ◽  
RICHARD M. SPENCER ◽  
CARLOS O. PUENTE ◽  
...  

ABSTRACT Grassroots exploration has led to discovery of 10 porphyry copper prospects in the previously unexplored Jurassic arc of southeastern Ecuador. The prospects are located in steep, wet, jungle-covered terrain in the Pangui area, part of the Cordillera del Cóndor. The exploration program, initially mounted in search of gold in the Oriente foreland basin, employed panned-concentrate drainage sampling. Follow-up of the resulting anomalies utilized soil sampling combined with rock-chip sampling and geologic mapping of the restricted creek outcrops. Scout and infill drilling of two of the prospects, San Carlos and Panantza, has shown hypogene mineralization averaging 0.5 to 0.7 percent Cu overlain by thin (averaging <30 m) zones of chalcocite enrichment or oxidized copper mineralization. The prospects are centered on small, composite granocliorite to monzogranite porphyry stocks that cut the Zamora batholith or, in one case, a satellite pluton. The batholith is emplaced into Jurassic volcanosedimentary formations, which concealed Triassic extensional half-grabens before being incorporated into the Subandean fold-thrust belt along the western margin of the Oriente basin. North- and northwest-striking normal faults in the hanging wall of a major north-striking fault zone controlled the locations of most of the porphyry centers. K silicate and variably overprinted intermediate argillic alteration, containing chalcopyrite as the principal sulfide mineral, characterize the central parts of most of the porphyry prospects and grade outward to pyrite-dominated propylitic halos. Overprinted sericitic alteration is generally less widely developed, although apparently shallower erosion at the Warintza and Wawame prospects resulted in preservation of extensive pyrite-rich sericitic zones. All the prospects contain appreciable (60–250 ppm) molybdenum, but gold tenors are low except at Panantza and Wawame (~0.15 and 0.2 g/t, respectively). Supergene oxidation and chalcocite enrichment zones are immature because of inhibition by the rapid erosion prevalent in the Pangui area. Supergene profiles attain their maximum development on ridge crests but are essentially absent along major creeks. Discovery of the Pangui belt, along with other recently defined porphyry copper systems in northern Perú, Indonesia, and the Philippines, underscores yet again the efficacy of drainage geochemistry as an exploration technique in tropical and subtropical arc terranes as well as the outstanding potential for additional exposed deposits in poorly explored parts of the circum-Pacific region.


2016 ◽  
Vol 155 (1) ◽  
pp. 119-131 ◽  
Author(s):  
V. I. DAVYDOV ◽  
J. L. CROWLEY ◽  
M. D. SCHMITZ ◽  
W. S. SNYDER

AbstractThe discovery and dating of a volcanic ash bed within the upper Phosphoria Formation in SE Idaho, USA, is reported. The ash occurs 11 m below the top of the phosphatic Meade Peak Member and yielded a 206Pb/238U date of 260.57 ± 0.07 / 0.14 / 0.31 Ma, i.e. latest Capitanian, Guadalupian. The stratigraphic position of this ash near the top of the Meade Peak phosphatic Member of Phosphoria Formation indicates plausible completeness of the sedimentation within the Guadalupian–Lopingian and probably at the Permo-Triassic (P-T) transitions. The new radiometric age reveals that the regional biostratigraphy and palaeontology of Phosphoria and Park City formations requires serious reconsideration, particularly in cool water conodonts, bryozoans and brachiopods. The new age proposes that the Guadalupian–Lopingian boundary (GLB) coincides with the Meade Peak – Rex contact and consequently with the end-Guadalupian extinction event. The lack of a major unconformity at the P-T transition suggests that the effects of the Sonoma orogeny were not as extensive as has been assumed.


GeoArabia ◽  
2013 ◽  
Vol 18 (2) ◽  
pp. 99-136
Author(s):  
Simon Virgo ◽  
Max Arndt ◽  
Zoé Sobisch ◽  
Janos L. Urai

ABSTRACT We present a high-resolution structural study on the dip slope of the southern flank of Jabal Shams in the central Oman Mountains. The objectives of the study were: (1) to test existing satellite-based interpretations of structural elements in the area; (2) prepare an accurate geological map; and (3) collect an extensive structural dataset of fault and bedding planes, fault throws, veins and joints. These data are compared with existing models of tectonic evolution in the Oman Mountains and the subsurface, and used to assess the applicability of these structures as analogs for fault and fracture systems in subsurface carbonate reservoirs in Oman. The complete exposure of clean rock incised by deep wadis allowed detailed mapping of the complex fault, vein and joint system hosted by Member 3 of the Cretaceous Kahmah Group. The member was divided into eight units for mapping purposes, in about 100 m of vertical stratigraphy. The map was almost exclusively based on direct field observations. It includes measurement of fault throw in many locations and the construction of profiles, which are accurate to within a few meters. Ground-truthing of existing satellite-based interpretations of structural elements showed that faults can be mapped with high confidence using remote-sensing data. The faults range into the subseismic scale with throws as little as a few decimeters. However, the existing interpretation of lineaments as cemented fractures was shown to be incorrect: the majority of these are open fractures formed along reactivated veins. The most prominent structure in the study area is a conjugate set of ESE-striking faults with throws resolvable from several centimeters to hundreds of meters. These faults contain bundles of coarse-grained calcite veins, which may be brecciated during reactivation. We interpret these faults to be a conjugate normal- to oblique fault set, which was rotated together with bedding during the folding of the Al Jabal al-Akhdar anticline. There are many generations of calcite veins with minor offset and at high-angle-to-bedding, sometimes in en-echelon sets. Analysis of clear overprinting relationships between veins at high-angle-to-bedding is consistent with the interpretations of Holland et al. (2009a); however we interpret the anticlockwise rotation of vein strike orientation to start before and end after the normal faulting. The normal faults post-date the bedding-parallel shear veins in the study area. Thus these faults formed after the emplacement of the Semail and Hawasina Nappes. They were previously interpreted to be of the same age as the regional normal- to oblique-slip faults in the subsurface of northern Oman and the United Arab Emirates, which evolved during the early deposition of the Campanian Fiqa Formation as proposed by Filbrandt et al. (2006). We interpret them also to be coeval with the Phase I extension of Fournier et al. (2006). The reactivation of these faults and the evolution of new veins was followed by folding of the Al Jabal al-Akhdar anticline and final uplift and jointing by reactivation of pre-existing microveins. Thus the faults in the study area are of comparable kinematics and age as those in the subsurface. However they formed at much greater depth and fluid pressures, so that direct use of these structures as analogs for fault and fracture systems in subsurface reservoirs in Oman should be undertaken with care.


2021 ◽  
Author(s):  
Vitale Stefano ◽  
Prinzi Ernesto Paolo ◽  
Francesco D'Assisi Tramparulo ◽  
Sabatino Ciarcia

<p>We present a structural study on late Miocene-early Pliocene out-of-sequence thrusts affecting the southern Apennine chain. The analyzed structures are exposed in the Campania region (southern Italy). Here, leading thrusts bound the N-NE side of the carbonate ridges that form the regional mountain backbone. In several outcrops, the Mesozoic carbonates are superposed onto the unconformable wedge-top basin deposits of the upper Miocene Castelvetere Group, providing constraints to the age of the activity of this thrusting event. We further analyzed the tectonic windows of Giffoni and Campagna, located on the rear of the leading thrust. We reconstructed the orogenic evolution of this part of the orogen. The first was related to the in-sequence thrusting with minor thrusts and folds, widespread both in the footwall and in the hanging wall. A subsequent extension has formed normal faults crosscutting the early thrusts and folds. All structures were subsequently affected by two shortening stages, which also deformed the upper Miocene wedge top basin deposits of the Castelvetere Group. We interpreted these late structures as related to an out-of-sequence thrust system defined by a main frontal E-verging thrust and lateral ramps characterized by N and S vergences. Associated with these thrusting events, LANFs were formed in the hanging wall of the major thrusts. Such out-of-sequence thrusts are observed in the whole southern Apennines and record a thrusting event that occurred in the late Messinian-early Pliocene. We related this tectonic episode to the positive inversion of inherited normal faults located in the Paleozoic basement. These envelopments thrust upward crosscut the allochthonous wedge, including, in the western zone of the chain, the upper Miocene wedge-top basin deposits. Finally, we suggest that the two tectonic windows are the result of the formation of an E-W trending regional antiform, associated with a late S-verging back-thrust, that has been eroded and crosscut by Early Pleistocene normal faults.</p>


2015 ◽  
Vol 50 (6) ◽  
pp. 452-477 ◽  
Author(s):  
T. A. Ivanovskaya ◽  
B. B. Zviagina ◽  
B. A. Sakharov ◽  
T. S. Zaitseva ◽  
E. V. Pokrovskaya ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document