Whole-lake effects of invasive crayfish (Orconectes spp.) and the potential for restoration

2006 ◽  
Vol 63 (6) ◽  
pp. 1276-1285 ◽  
Author(s):  
Sadie K Rosenthal ◽  
Samantha S Stevens ◽  
David M Lodge

Effects of invasive species are often extrapolated to whole systems based on small-scale, short-term, and (or) single-system studies. For example, previous laboratory studies and in-lake cage experiments suggest that invasive crayfish Orconectes rusticus and O. propinquus reduce macrophyte and snail abundance in north temperate lakes, and snapshot lake surveys provide supporting evidence. Still, these impacts have not been demonstrated in multiple whole lakes over time. Thus, in summer of 2003, we resurveyed benthic invertebrates and macrophytes in lakes originally surveyed by the Michigan Department of Natural Resources in the late 1930s. Our multilake survey supports the macrophyte results from small-scale and comparative studies: macrophyte species richness and abundance declined significantly in invaded lakes relative to uninvaded lakes. We next conducted a laboratory seed-bank study to examine the potential for macrophyte restoration in a lake occupied by rusty crayfish for at least 15 years. Only two macrophyte species (Najas flexilis and Chara spp.) germinated from sediments from the invaded lake compared with eight species from reference sediments. This suggests that invaded lakes may have depauperate seed banks and that restoration of invaded macrophyte communities may require manual planting, even if crayfish could be removed.

1984 ◽  
Vol 32 (5) ◽  
pp. 495 ◽  
Author(s):  
BA Myers ◽  
TF Neales

Field observations of some parameters of the water relations of the two eucalypt species E. behriana and E. microcarpa in dry sclerophyll, mallee and woodland vegetation were made at three sites from 1980 to 1983. The mean ( n = 519) water potential measured at dawn (Ψdawn) was -3.07± 0.01 MPa and fluctuated seasonally with rainfall intensity over the range -2.0 ± 0, 1 to -4.4 ± 0.1 MPa ( n = 30). Both species behaved similarly and some osmotic adjustment took place. Mean leaf conductance (gs) varied between 0.151 ± 0.006 and 0.003 ± 0.001 mol m-2 s-1 . Maximum daily values of gs were linearly related to Ψdawn as it fluctuated seasonally. The slope of this linear regression was not significantly different from that relating these values of gs and Ψ, when both were measured concurrently. There were thus no indications of a distinction between the responses of gs to long- and short-term fluctuations of Ψ or of a threshold-type response of gs to Ψ. Field measurements indicated that gs was decreased at high values of vapour pressure difference (Δe). In laboratory studies with seedlings of the two species gs decreased from 0.5 to 0.1 mol m-2 s-I as Δe increased from 0.5 to 3.0 kPa. Leaf and canopy conductance were the predominant plant determinants of transpiration rate (Er) in this type of vegetation which has the capacity to restrict Et via the effect of water potential (Ψ) on gs and also by the response of gs to Δe. Some of the water relations parameters of E. behriana indicated that this species was better able to withstand drought than was E microcarpa.


Oecologia ◽  
2000 ◽  
Vol 125 (4) ◽  
pp. 559-572 ◽  
Author(s):  
Samuel Zschokke ◽  
Claudine Dolt ◽  
Hans-Peter Rusterholz ◽  
Peter Oggier ◽  
Brigitte Braschler ◽  
...  
Keyword(s):  

Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3405 ◽  
Author(s):  
Manuel Espinosa-Gavira ◽  
Agustín Agüera-Pérez ◽  
Juan González de la Rosa ◽  
José Palomares-Salas ◽  
José Sierra-Fernández

Very short-term solar forecasts are gaining interest for their application on real-time control of photovoltaic systems. These forecasts are intimately related to the cloud motion that produce variations of the irradiance field on scales of seconds and meters, thus particularly impacting in small photovoltaic systems. Very short-term forecast models must be supported by updated information of the local irradiance field, and solar sensor networks are positioning as the more direct way to obtain these data. The development of solar sensor networks adapted to small-scale systems as microgrids is subject to specific requirements: high updating frequency, high density of measurement points and low investment. This paper proposes a wireless sensor network able to provide snapshots of the irradiance field with an updating frequency of 2 Hz. The network comprised 16 motes regularly distributed over an area of 15 m × 15 m (4 motes × 4 motes, minimum intersensor distance of 5 m). The irradiance values were estimated from illuminance measurements acquired by lux-meters in the network motes. The estimated irradiances were validated with measurements of a secondary standard pyranometer obtaining a mean absolute error of 24.4 W/m 2 and a standard deviation of 36.1 W/m 2 . The network was able to capture the cloud motion and the main features of the irradiance field even with the reduced dimensions of the monitoring area. These results and the low-cost of the measurement devices indicate that this concept of solar sensor networks would be appropriate not only for photovoltaic plants in the range of MW, but also for smaller systems such as the ones installed in microgrids.


2013 ◽  
Vol 10 (11) ◽  
pp. 7647-7659 ◽  
Author(s):  
M. Blasnig ◽  
B. Riedel ◽  
L. Schiemer ◽  
M. Zuschin ◽  
M. Stachowitsch

Abstract. The northern Adriatic Sea is one of nearly 500 areas worldwide suffering widespread mortalities due to anoxia. The present study documents post-anoxia macrofauna dynamics after experimentally inducing small-scale anoxia in 24 m depth (2 plots, each 50 cm × 50 cm). Time-lapse camera deployments examined short-term scavenging of the moribund and dead organisms (multi-species clumps consisting of sponges and ascidians) over two 3-day periods (August 2009: 71.5 h, September 2009: 67.5 h). Longer term recovery (days to 2 yr) in the same two plots was examined with an independent photo series. Scavengers arrived quickly and in a distinct sequence: demersal (Gobius niger, Serranus hepatus) and benthopelagic fishes (Diplodus vulgaris, Pagellus erythrinus), followed by hermit crabs (Paguristes eremita, showing a clear day/night rhythm in presence) and gastropods (Hexaplex trunculus). This sequence is attributed to the relative speeds and densities of the organisms. The sessile fauna was largely removed or consumed within seven (August plot) and 13 (September plot) days after anoxia, confirming our first hypothesis that decaying organisms are quickly utilised. The scavengers remained in dense aggregations (e.g. up to 33 P. eremita individuals at one time) as long as dead organisms were available. No recovery of sessile macroepibenthos macroepibenthos occurred in the experimental plots one and two years after anoxia, undermining our second hypothesis that small denuded areas are more rapidly recolonised. This study underlines the sensitivity of this soft-bottom community and supports calls for reducing additional anthropogenic disturbances such as fishing practices that further impede recolonisation and threaten benthic community structure and function over the long term.


1992 ◽  
Vol 241 ◽  
pp. 443-467 ◽  
Author(s):  
A. Neish ◽  
F. T. Smith

The basic model problem of separation as predicted by the time-mean boundary-layer equations is studied, with the Cebeci-Smith model for turbulent stresses. The changes between laminar and turbulent flow are investigated by means of a turbulence ‘factor’ which increases from zero for laminar flow to unity for the fully turbulent regime. With an attached-flow starting point, a small increase in the turbulence factor above zero is found to drive the separation singularity towards the trailing edge or rear stagnation point for flow past a circular cylinder, according to both computations and analysis. A separated-flow starting point is found to produce analogous behaviour for the separation point. These findings lead to the suggestion that large-scale separation need not occur at all in the fully turbulent regime at sufficiently high Reynolds number; instead, separation is of small scale, confined near the trailing edge. Comments on the generality of this suggestion are presented, along with some supporting evidence from other computations. Further, the small scale involved theoretically has values which seem reasonable in practical terms.


2017 ◽  
Vol 14 (22) ◽  
pp. 5239-5252 ◽  
Author(s):  
Daniel Puppe ◽  
Axel Höhn ◽  
Danuta Kaczorek ◽  
Manfred Wanner ◽  
Marc Wehrhan ◽  
...  

Abstract. The significance of biogenic silicon (BSi) pools as a key factor for the control of Si fluxes from terrestrial to aquatic ecosystems has been recognized for decades. However, while most research has been focused on phytogenic Si pools, knowledge of other BSi pools is still limited. We hypothesized that different BSi pools influence short-term changes in the water-soluble Si fraction in soils to different extents. To test our hypothesis we took plant (Calamagrostis epigejos, Phragmites australis) and soil samples in an artificial catchment in a post-mining landscape in the state of Brandenburg, Germany. We quantified phytogenic (phytoliths), protistic (diatom frustules and testate amoeba shells) and zoogenic (sponge spicules) Si pools as well as Tiron-extractable and water-soluble Si fractions in soils at the beginning (t0) and after 10 years (t10) of ecosystem development. As expected the results of Tiron extraction showed that there are no consistent changes in the amorphous Si pool at Chicken Creek (Hühnerwasser) as early as after 10 years. In contrast to t0 we found increased water-soluble Si and BSi pools at t10; thus we concluded that BSi pools are the main driver of short-term changes in water-soluble Si. However, because total BSi represents only small proportions of water-soluble Si at t0 (< 2 %) and t10 (2.8–4.3 %) we further concluded that smaller (< 5 µm) and/or fragile phytogenic Si structures have the biggest impact on short-term changes in water-soluble Si. In this context, extracted phytoliths (> 5 µm) only amounted to about 16 % of total Si contents of plant materials of C. epigejos and P. australis at t10; thus about 84 % of small-scale and/or fragile phytogenic Si is not quantified by the used phytolith extraction method. Analyses of small-scale and fragile phytogenic Si structures are urgently needed in future work as they seem to represent the biggest and most reactive Si pool in soils. Thus they are the most important drivers of Si cycling in terrestrial biogeosystems.


2021 ◽  
pp. 1-31
Author(s):  
Filippo Osella

Abstract Drawing on ethnographic data collected in China, the United Arab Emirates (UAE), and India, this article explores the life-world and practices of small-scale Indian export agents based in Yiwu, China, the world centre for the export of small commodities. It shows that in a market overdetermined by fast-moving goods, short-term gains, and low margins, export agents have to steer their way between acting with extreme caution or taking risks with their clients and suppliers. These apparently contradictory dispositions or orientations are negotiated by the judicious exercise of mistrust and suspicion. The article suggests not only that mistrust is valued and cultivated as an indispensable practical resource for success in Yiwu's export trade, but that contingent relations of trust between market players emerge at the interstices of a generalized mutual mistrust, via the mobilization of practices of hospitality, commensality, and masculine conviviality. Indeed, feelings of amity and mutuality elicited by the performance of modalities of social intimacy become the affective terrain upon which divergent economic interests might be reconciled and taken forward. That is, mistrust might not lead to generalized distrust, instead a situational or contingent trust might actually emerge through the judicious exercise of mistrust.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jennifer Rehren ◽  
Maria Grazia Pennino ◽  
Marta Coll ◽  
Narriman Jiddawi ◽  
Christopher Muhando

Marine conservation areas are an important tool for the sustainable management of multispecies, small-scale fisheries. Effective spatial management requires a proper understanding of the spatial distribution of target species and the identification of its environmental drivers. Small-scale fisheries, however, often face scarcity and low-quality of data. In these situations, approaches for the prioritization of conservation areas need to deal with scattered, biased, and short-term information and ideally should quantify data- and model-specific uncertainties for a better understanding of the risks related to management interventions. We used a Bayesian hierarchical species distribution modeling approach on annual landing data of the heavily exploited, small-scale, and data-poor fishery of Chwaka Bay (Zanzibar) in the Western Indian Ocean to understand the distribution of the key target species and identify potential areas for conservation. Few commonalities were found in the set of important habitat and environmental drivers among species, but temperature, depth, and seagrass cover affected the spatial distribution of three of the six analyzed species. A comparison of our results with information from ecological studies suggests that our approach predicts the distribution of the analyzed species reasonably well. Furthermore, the two main common areas of high relative abundance identified in our study have been previously suggested by the local fisher as important areas for spatial conservation. By using short-term, catch per unit of effort data in a Bayesian hierarchical framework, we quantify the associated uncertainties while accounting for spatial dependencies. More importantly, the use of accessible and interpretable tools, such as the here created spatial maps, can frame a better understanding of spatio-temporal management for local fishers. Our approach, thus, supports the operability of spatial management in small-scale fisheries suffering from a general lack of long-term fisheries information and fisheries independent data.


2008 ◽  
Vol 5 (3) ◽  
pp. 779-795 ◽  
Author(s):  
A. C. de Araújo ◽  
J. P. H. B. Ometto ◽  
A. J. Dolman ◽  
B. Kruijt ◽  
M. J. Waterloo ◽  
...  

Abstract. The carbon isotope of a leaf (δ13Cleaf) is generally more negative in riparian zones than in areas with low soil moisture content or rainfall input. In Central Amazonia, the small-scale topography is composed of plateaus and valleys, with plateaus generally having a lower soil moisture status than the valley edges in the dry season. Yet in the dry season, the nocturnal accumulation of CO2 is higher in the valleys than on the plateaus. Samples of sunlit leaves and atmospheric air were collected along a topographical gradient in the dry season to test whether the δ13Cleaf of sunlit leaves and the carbon isotope ratio of ecosystem respired CO2 (δ13CReco) may be more negative in the valley than those on the plateau. The δ13Cleaf was significantly more negative in the valley than on the plateau. Factors considered to be driving the observed variability in δ13Cleaf were: leaf nitrogen concentration, leaf mass per unit area (LMA), soil moisture availability, more negative carbon isotope ratio of atmospheric CO2 (δ13Ca) in the valleys during daytime hours, and leaf discrimination (Δleaf). The observed pattern of δ13Cleaf might suggest that water-use efficiency (WUE) is higher on the plateaus than in the valleys. However, there was no full supporting evidence for this because it remains unclear how much of the difference in δ13Cleaf was driven by physiology or &amp;delta13Ca. The δ13CReco was more negative in the valleys than on the plateaus on some nights, whereas in others it was not. It is likely that lateral drainage of CO2 enriched in 13C from upslope areas might have happened when the nights were less stable. Biotic factors such as soil CO2 efflux (Rsoil) and the responses of plants to environmental variables such as vapor pressure deficit (D) may also play a role. The preferential pooling of CO2 in the low-lying areas of this landscape may confound the interpretation of δ13Cleaf and δ13CReco.


Sign in / Sign up

Export Citation Format

Share Document